
CSE/EE 461
Getting Started with Networking

Basic Concepts

 A PROCESS is an executing program somewhere.
 Eg, “./a.out”

 A MESSAGE contains information sent by one PROCESS to ANOTHER
 Eg, “please get www.cs.washington.edu/index.html”

 A COMMUNICATIONS ENDPOINT is the name of some source or destination
of a message
 Host: www.cs.washington.edu, Port: 80

 A PROTOCOL is the SET-OF-RULES governing the transmission of
MESSAGES
 Protocol: TCP/IP

 A MESSAGING-API is the programming interface used by PROCESSES to
send/receive MESSAGES

 Typically,
 OS implements the PARTS IN RED
 Application provides/consumes the MESSAGES.

Example: TCP Delivery

Application process

Write
bytes

TCP
Send buffer

Segment Segment Segment
Transmit segments

Application process

Read
bytes

TCP
Receive buffer

…

… …

OS

APP

The API

Unix SOCKETS

Berkeley Sockets

 Networking protocols are implemented as part of the OS
 The networking API exported by most OS’s is the socket interface
 Originally provided by BSD 4.1c ~1982.

 The principal abstraction is a socket
 Point at which an application attaches to the network
 Defines operations for creating connections, attaching to network,

sending/receiving data, closing.

 Two primary protocols used
 Reliable Connections (TCP)

• Like a telephone
 Unreliable Datagrams (UDP)

• Like postcards

The Client/Server Paradigm

 A Server is a long lived process that LISTENS in at some well-known
COMMUNICATIONS-ENDPOINT
 Awaiting a new request
 Satisfy the new request
 Send a response
 Do it again

 A Client is a (possibly short lived) process that makes requests on Servers
 Format a message containing the request
 Send the message to the Server
 Await the response
 Process the response

 Classic Example:
 WWW

• Web Servers (Apache, IIS, etc)
• Web Clients (IE, Safari, Firefox)

 Clients CONNECT to SERVERS by means of an OS API

Client/Server Connection API
Server

Socket()

Bind()
Client

Socket()
Listen()

Accept()

Recv()

Send()

Connect()

Send()

Recv()

Block until
connect

Process
request

Connection Establishment.

Data (request)

Data (reply)

Structure

 Server
 Make a “rendezvous socket” on

which to accept requests
• socket

 Associate an “address” with that
socket so that others can submit
requests

• bind
 Ready the socket for requests

• listen
 Await a request on the

rendezvous socket
• accept

– Creates a SECOND socket
 Read the request (from the

SECOND socket)
• read

 Do the request
• XX

 Send the response
• write

 Client
 Make a local “socket” on

which to send requests to the
rendezvous address

• socket

 Connect to the rendezvous
address by means of the local
socket

• connect
 Send the request

• write

 Await the response
• read

Socket call

 Means by which an application attached to the network
 #include <sys/socket.h>…

 int socket(int family, int type, int protocol)
 Family: address family (protocol family)

 AF_UNIX, AF_INET, AF_NS, AF_IMPLINK

 Type: semantics of communication
 SOCK_STREAM, SOCK_DGRAM, SOCK_RAW
 Not all combinations of family and type are valid

 Protocol: Usually set to 0 but can be set to specific value.
 Family and type usually imply the protocol

 Return value is a handle for new socket

Bind call

 Typically a server call
 Binds a newly created socket to the specified address

 int bind(int socket, struct sockaddr *address, int addr_len)
 Socket: newly created socket handle
 Address: data structure of address of local system

 IP address (host identifier) and port number (endpoint on identified
host)

 SOCKET and PORT are not the same concept
 Socket: “widget” that a process uses to manipulate its endpoint
 Port: hostwide name of a communication’s endpoint
 Address: hostname.port pair
 For comparison:

• Socket == file descriptor
• port == file name,
• address == network file name

Listen call

 Used by connection-oriented servers to indicate an
application is willing to receive connections

 Int(int socket, int backlog)
 Socket: handle of newly creates socket
 Backlog: number of connection requests that can be

queued by the system while waiting for server to
execute accept call.

Accept call

 A server call
 After executing listen, the accept call carries out a

passive open (server prepared to accept connects).
 int accept(int socket, struct sockaddr *address, int addr_len)

 It blocks until a remote client carries out a connection
request.

 When it does return, it returns with a new socket that
corresponds with new connection and the address
contains the clients address

Connect call

 A client call
 Client executes an active open of a connection

 int connect(int socket, struct sockaddr *address, int addr_len)
 How does the OS know where the server is?

 Call does not return until the three-way handshake
(TCP) is complete

 Address field contains remote system’s address
 Client OS usually selects random, unused port

Input and Output

 After connection has been made, application uses send/recv to data
 int send(int socket, char *message, int msg_len, int flags)

 Send specified message using specified socket

 int recv(int socket, char *buffer, int buf_len, int flags)
 Receive message from specified socket into specified buffer

 Or can use read/write
 int read(int socket, char* buffer, int len)
 int write(int socket, char* buffer, int len);

 Or can sometimes use sendto/recvfrom
 Or can use sendmsg, recvmsg for “scatter/gather”

Connection Establishment

 Both sender and receiver must be ready before we start
to transfer the data
 Sender and receiver need to agree on a set of

parameters
 e.g., the Maximum Segment Size (MSS)

 This is signaling
 It sets up state at the endpoints
 Compare to “dialing” in the telephone network

 In TCP a Three-Way Handshake is used

Sample Code

SERVER

CLIENT

Running it…

Run 1

Run 2

How are these two runs different?

dogmatix.dyn.cs.washington.edu arvind% ./server 9998 &
[1] 736
dogmatix.dyn.cs.washington.edu arvind% ./client localhost 9998
Please enter the message: This is a test
Here is the message: This is a test

I got your message

dogmatix.dyn.cs.washington.edu arvind% ./server 9999 &
[1] 736
dogmatix.dyn.cs.washington.edu arvind% ./client dogmatix 9999
Please enter the message: This is a test
Here is the message: This is a test

I got your message

Observing Communication

Messages are sent via NETWORK
INTERFACES

eg, “lo0”, “en0”
The tcpdump program allows us to
observe network traffic.

“man tcpdump” for more
information!

