
1

Peer-to-Peer Systems

Peer-to-Peer Systems

  Quickly grown in popularity:
  Dozens or hundreds of file sharing applications
  In 2004:

•  35 million adults used P2P networks – 29% of all Internet users in
USA

•  BitTorrent: a few million users at any given point
•  35% of Internet traffic is from BitTorrent

  Upset the music industry, drawn college students, web
developers, recording artists and universities into court

  But P2P is not new and is probably here to stay

  P2P is simply the next iteration of scalable distributed systems

2

3

Client-Server Communication

  Client “sometimes on”
  Initiates a request to the

server when interested
  E.g., Web browser on your

laptop or cell phone
  Doesn’t communicate

directly with other clients
  Needs to know the server’s

address

  Server is “always on”
  Services requests from

many client hosts
  E.g., Web server for the

www.cnn.com Web site
  Doesn’t initiate contact

with the clients
  Needs a fixed, well-known

address

4

Server Distributing a Large File

d1

F bits

d2

d3

d4

upload rate us

Download rates di

Internet

3

5

Server Distributing a Large File

  Server sending a large file to N receivers
  Large file with F bits
  Single server with upload rate us

  Download rate di for receiver i
  Server transmission to N receivers

  Server needs to transmit NF bits
  Takes at least NF/us time

  Receiving the data
  Slowest receiver receives at rate dmin= mini{di}
  Takes at least F/dmin time

  Download time: max{NF/us, F/dmin}

6

Speeding Up the File Distribution

  Increase the upload rate from the server
  Higher link bandwidth at the one server
  Multiple servers, each with their own link
  Requires deploying more infrastructure

  Alternative: have the receivers help
  Receivers get a copy of the data
  And then redistribute the data to other receivers
  To reduce the burden on the server

4

7

Peers Help Distributing a Large File

d1

F bits

d2

d3

d4

upload rate us

Download rates di

Internet

u1 u2
u3

u4

Upload rates ui

8

Peers Help Distributing a Large File

  Start with a single copy of a large file
  Large file with F bits and server upload rate us

  Peer i with download rate di and upload rate ui
  Two components of distribution latency

  Server must send each bit: min time F/us

  Slowest peer receives each bit: min time F/dmin

  Total upload time using all upload resources
  Total number of bits: NF
  Total upload bandwidth us + sumi(ui)

  Total: max{F/us, F/dmin, NF/(us+sumi(ui))}

5

9

Comparing the Two Models

  Download time
  Client-server: max{NF/us, F/dmin}
  Peer-to-peer: max{F/us, F/dmin, NF/(us+sumi(ui))}

  Peer-to-peer is self-scaling
  Much lower demands on server bandwidth
  Distribution time grows only slowly with N

  But…
  Peers may come and go
  Peers need to find each other
  Peers need to be willing to help each other

P2P vs. Youtube

  Let’s compare BitTorrent vs. Youtube
  Capacity to accept and store content:

  Youtube currently accepts 200K videos per day (or
about 1TB)

  1000 TV channels producing 1Mb/s translates to
about 10TB per day

6

P2P vs. Youtube

  BitTorrent capacity to serve the content
  Piratebay has 5M users at any given point in time
  Assume average lifetime of 6 hours and download of

0.5GB: total data served = 10,000 TB
  Factor of 2 for other p2p systems, total = 20,000 TB

  Youtube served 100M videos per day about an year back
  Assume that the number is 200M videos, average video

size is 5MB, total data served = 1000TB per day

P2P vs. Youtube

  Capacity to serve the content based on bandwidth
capacity

  Piratebay: 5M leechers, 5M seeders
  Assume average of 400Kbps per user
  Translates to about 4 Tbps

  Youtube: assume a 10 Gbps connection from data center
  Then need about 400 data centers to match the serving

capacity of BitTorrent

7

13

Challenges of Peer-to-Peer

  Peers come and go
  Peers are intermittently connected
  May come and go at any time
  Or come back with a different IP address

  How to locate the relevant peers?
  Peers that are online right now
  Peers that have the content you want

  How to motivate peers to stay in system?
  Why not leave as soon as download ends?
  Why bother uploading content to anyone else?

14

Locating the Relevant Peers

  Three main approaches
  Central directory (Napster)
  Query flooding (Gnutella)
  Hierarchical overlay (Kazaa, modern Gnutella)

  Design goals
  Scalability
  Simplicity
  Robustness
  Plausible deniability

8

15

Peer-to-Peer Networks: Napster

  Napster history: the rise
  January 1999: Napster version 1.0
  May 1999: company founded
  September 1999: first lawsuits
  2000: 80 million users

  Napster history: the fall
  Mid 2001: out of business due to lawsuits
  Mid 2001: dozens of P2P alternatives that were harder to touch,

though these have gradually been constrained
  2003: growth of pay services like iTunes

  Napster history: the resurrection
  2003: Napster reconstituted as a pay service
  2007: still lots of file sharing going on

Shawn Fanning,
Northeastern freshman

16

Napster Technology: Directory Service

  User installing the software
  Download the client program
  Register name, password, local directory, etc.

  Client contacts Napster (via TCP)
  Provides a list of music files it will share
  … and Napster’s central server updates the directory

  Client searches on a title or performer
  Napster identifies online clients with the file
  … and provides IP addresses

  Client requests the file from the chosen supplier
  Supplier transmits the file to the client
  Both client and supplier report status to Napster

9

17

Napster Technology: Properties
  Server’s directory continually updated

  Always know what music is currently available
  Point of vulnerability for legal action

  Peer-to-peer file transfer
  No load on the server
  Plausible deniability for legal action (but not enough)

  Proprietary protocol
  Login, search, upload, download, and status operations
  No security: cleartext passwords and other vulnerability

  Bandwidth issues
  Suppliers ranked by apparent bandwidth & response

time

18

Napster: Limitations of Central Directory

  Single point of failure
  Performance bottleneck
  Copyright infringement

  So, later P2P systems were more distributed
  Gnutella went to the other extreme…

 File transfer is
decentralized, but
locating content is
highly centralized

10

19

Peer-to-Peer Networks: Gnutella
  Gnutella history

  2000: J. Frankel &
T. Pepper released
Gnutella

  Soon after: many other
clients (e.g., Morpheus,
Limewire, Bearshare)

  2001: protocol
enhancements, e.g.,
“ultrapeers”

  Query flooding
  Join: contact a few nodes

to become neighbors
  Publish: no need!
  Search: ask neighbors,

who ask their neighbors
  Fetch: get file directly

from another node

20

Gnutella: Query Flooding
  Fully distributed

  No central server

  Public domain protocol
  Many Gnutella clients

implementing protocol

Overlay network: graph
  Edge between peer X

and Y if there’s a TCP
connection

  All active peers and
edges is overlay net

  Given peer will
typically be connected
with < 10 overlay
neighbors

11

21

Gnutella: Protocol

  Query message sent
over existing TCP
connections

  Peers forward
Query message

  QueryHit
sent over
reverse
path

Query

QueryHit

Query

QueryHit

File transfer:
HTTP

Scalability:
limited scope
flooding

22

Gnutella: Peer Joining

  Joining peer X must find some other peers
  Start with a list of candidate peers
  X sequentially attempts TCP connections with peers

on list until connection setup with Y
  X sends Ping message to Y

  Y forwards Ping message.
  All peers receiving Ping message respond with Pong

message
  X receives many Pong messages

  X can then set up additional TCP connections

12

23

Gnutella: Pros and Cons

  Advantages
  Fully decentralized
  Search cost distributed
  Processing per node permits powerful search

semantics
  Disadvantages

  Search scope may be quite large
  Search time may be quite long
  High overhead, and nodes come and go often

Aside: Search Time?

13

Aside: All Peers Equal?

56kbps Modem

10Mbps LAN

1.5Mbps DSL

56kbps Modem

56kbps Modem

1.5Mbps DSL

1.5Mbps DSL

1.5Mbps DSL

Aside: Network Resilience

Partial Topology
 Random 30% die
 Targeted 4% die

from Saroiu et al., MMCN 2002

14

27

Peer-to-Peer Networks: KaAzA

  KaZaA history
  2001: created by Dutch

company (Kazaa BV)
  Single network called

FastTrack used by other
clients as well

  Eventually the protocol
changed so other clients
could no longer talk to it

  Smart query flooding
  Join: on start, the client

contacts a super-node (and
may later become one)

  Publish: client sends list of files
to its super-node

  Search: send query to super-
node, and the super-nodes
flood queries among
themselves

  Fetch: get file directly from
peer(s); can fetch from multiple
peers at once

28

KaZaA: Exploiting Heterogeneity

  Each peer is either a group
leader or assigned to a group
leader
  TCP connection between

peer and its group leader
  TCP connections between

some pairs of group leaders
  Group leader tracks the

content in all its children

15

29

KaZaA: Motivation for Super-Nodes

  Query consolidation
  Many connected nodes may have only a few files
  Propagating query to a sub-node may take more time

than for the super-node to answer itself
  Stability

  Super-node selection favors nodes with high up-time
  How long you’ve been on is a good predictor of how

long you’ll be around in the future

30

Peer-to-Peer Networks: BitTorrent

  BitTorrent history and motivation
  2002: B. Cohen debuted BitTorrent
  Key motivation: popular content

• Popularity exhibits temporal locality (Flash Crowds)
• E.g., Slashdot effect, CNN Web site on 9/11, release

of a new movie or game

  Focused on efficient fetching, not searching
• Distribute same file to many peers
• Single publisher, many downloaders

  Preventing free-loading

16

31

BitTorrent: Simultaneous Downloading

  Divide large file into many pieces
  Replicate different pieces on different peers
  A peer with a complete piece can trade with other

peers
  Peer can (hopefully) assemble the entire file

  Allows simultaneous downloading
  Retrieving different parts of the file from different

peers at the same time
  And uploading parts of the file to peers
  Important for very large files

32

BitTorrent: Tracker

  Infrastructure node
  Keeps track of peers participating in the torrent

  Peers register with the tracker
  Peer registers when it arrives
  Peer periodically informs tracker it is still there

  Tracker selects peers for downloading
  Returns a random set of peers
  Including their IP addresses
  So the new peer knows who to contact for data

17

33

BitTorrent: Chunks

  Large file divided into smaller pieces
  Fixed-sized chunks
  Typical chunk size of 16KB - 256 KB

  Allows simultaneous transfers
  Downloading chunks from different neighbors
  Uploading chunks to other neighbors

  Learning what chunks your neighbors have
  Broadcast to neighbors when you have a chunk

  File done when all chunks are downloaded

34

BitTorrent: Overall Architecture

Web page
with link

to .torrent

A

B

C

Peer

[Leech]

Downloader

“US”

Peer

[Seed]

Peer

[Leech]

Tracker Web Server

18

35

BitTorrent: Overall Architecture

Web page
with link

to .torrent

A

B

C

Peer

[Leech]

Downloader

“US”

Peer

[Seed]

Peer

[Leech]

Tracker Web Server

36

BitTorrent: Overall Architecture

Web page
with link

to .torrent

A

B

C

Peer

[Leech]

Downloader

“US”

Peer

[Seed]

Peer

[Leech]

Tracker Web Server

19

37

BitTorrent: Overall Architecture

Web page
with link

to .torrent

A

B

C

Peer

[Leech]

Downloader

“US”

Peer

[Seed]

Peer

[Leech]

Tracker

Shake-hand

Web Server

38

BitTorrent: Overall Architecture

Web page
with link

to .torrent

A

B

C

Peer

[Leech]

Downloader

“US”

Peer

[Seed]

Peer

[Leech]

Tracker

pieces

Web Server

20

39

BitTorrent: Overall Architecture

Web page
with link

to .torrent

A

B

C

Peer

[Leech]

Downloader

“US”

Peer

[Seed]

Peer

[Leech]

Tracker

pieces

Web Server

40

BitTorrent: Overall Architecture

Web page
with link

to .torrent

A

B

C

Peer

[Leech]

Downloader

“US”

Peer

[Seed]

Peer

[Leech]

Tracker

pieces

Web Server

21

41

BitTorrent: Chunk Request Order

  Which chunks to request?
  Could download in order
  Like an HTTP client does

  Problem: many peers have the early chunks
  Peers have little to share with each other
  Limiting the scalability of the system

  Problem: eventually nobody has rare chunks
  E.g., the chunks need the end of the file
  Limiting the ability to complete a download

  Solutions: random selection and rarest first

42

Free-Riding Problem in P2P Networks

  Vast majority of users are free-riders
  Most share no files and answer no queries
  Others limit # of connections or upload speed

  A few “peers” essentially act as servers
  A few individuals contributing to the public good
  Making them hubs that basically act as a server

  BitTorrent prevent free riding
  Allow the fastest peers to download from you
  Occasionally let some free loaders download

22

43

Bit-Torrent: Preventing Free-Riding

  Peer has limited upload bandwidth
  And must share it among multiple peers

  Prioritizing the upload bandwidth
  Favor neighbors that are uploading at highest rate

  Rewarding the top four neighbors
  Measure download bit rates from each neighbor
  Reciprocates by sending to the top four peers
  Recompute and reallocate every 10 seconds

  Optimistic unchoking
  Randomly try a new neighbor every 30 seconds
  So new neighbor has a chance to be a better partner

Study BitTorrent’s Incentives

  First, construct a model to predict unreciprocated
altruism
  Measure large number of popular swarms
  Estimate fairness, altruism, and reciprocation behavior

23

Fairness

End-host capacities

24

Per-Peer Send Rates

Altruism

25

Reciprocation Probability

Methodology

  First, construct a model to predict unreciprocated
altruism
  Measure large number of popular swarms
  Estimate fairness, altruism, and reciprocation behavior

  Second, develop a strategic client: BitTyrant

26

BitTyrant: Strategic Peer Selection

Select peers and rates to maximize “return-on-investment”

BitTyrant Performance

Ratio of BitTyrant Download Time to Original Download Time

C
um

ul
at

iv
e

Fr
ac

ti
on

0 0.5 1 2 3

27

53

BitTorrent Today

  Well designed system with some incentives
  Significant fraction of Internet traffic

  Estimated at 30%
  Though this is hard to measure

  Problem of incomplete downloads
  Peers leave the system when done
  Many file downloads never complete
  Especially a problem for less popular content

  Still lots of legal questions remains
  Further need for incentives

Distributed Hash Tables (DHT):
History

  In 2000-2001, academic researchers jumped on to the P2P
bandwagon

  Motivation:
  Guaranteed lookup success for files in system (the search

problem that BitTorrent doesn’t address)
  Provable bounds on search time
  Provable scalability to millions of node

  Hot topic in networking ever since

28

DHT: Overview

  Abstraction: a distributed “hash-table” (DHT) data structure:
  put(id, item);
  item = get(id);

  Implementation: nodes in system form an interconnection
network
  Can be Ring, Tree, Hypercube, Butterfly Network, ...

DHT: Example - Chord

  Associate with each node and file a unique id in an uni-
dimensional space (a Ring)
  E.g., pick from the range [0...2m]
  Usually the hash of the file or IP address

  Properties:
  Routing table size is O(log N) , where N is the total number

of nodes
  Guarantees that a file is found in O(log N) hops

from MIT in 2001

29

DHT: Consistent Hashing

N32

N90

N105

K80

K20

K5

Circular ID space

Key 5
Node 105

A key is stored at its successor: node with next higher ID

DHT: Chord Basic Lookup

N32

N90

N105

N60

N10

N120

K80

“Where is key 80?”

“N90 has K80”

30

DHT: Chord “Finger Table”

N80

1/2
1/4

1/8

1/16

1/32

1/64

1/128

  Entry i in the finger table of node n is the first node that succeeds or
equals n + 2i

  In other words, the ith finger points 1/2n-i way around the ring

DHT: Chord Join

  Assume an identifier space [0..8]

  Node n1 joins

0
1

2

3
4

5

6

7
i id+2i succ
0 2 1
1 3 1
2 5 1

Succ. Table

31

DHT: Chord Join

  Node n2 joins
0

1

2

3
4

5

6

7
i id+2i succ
0 2 2
1 3 1
2 5 1

Succ. Table

i id+2i succ
0 3 1
1 4 1
2 6 1

Succ. Table

DHT: Chord Join

  Nodes n0, n6 join
0

1

2

3
4

5

6

7
i id+2i succ
0 2 2
1 3 6
2 5 6

Succ. Table

i id+2i succ
0 3 6
1 4 6
2 6 6

Succ. Table

i id+2i succ
0 1 1
1 2 2
2 4 0

Succ. Table

i id+2i succ
0 7 0
1 0 0
2 2 2

Succ. Table

32

DHT: Chord Join

  Nodes:
n1, n2, n0, n6

  Items:
f7, f1 0

1

2

3
4

5

6

7 i id+2i succ
0 2 2
1 3 6
2 5 6

Succ. Table

i id+2i succ
0 3 6
1 4 6
2 6 6

Succ. Table

i id+2i succ
0 1 1
1 2 2
2 4 0

Succ. Table
7

Items
1

Items

i id+2i succ
0 7 0
1 0 0
2 2 2

Succ. Table

7

DHT: Chord Routing

  Upon receiving a query for item
id, a node:

  Checks whether stores the item
locally

  If not, forwards the query to the
largest node in its successor
table that does not exceed id

0
1

2

3
4

5

6

7 i id+2i succ
0 2 2
1 3 6
2 5 6

Succ. Table

i id+2i succ
0 3 6
1 4 6
2 6 6

Succ. Table

i id+2i succ
0 1 1
1 2 2
2 4 0

Succ. Table

Items
1

Items

i id+2i succ
0 7 0
1 0 0
2 2 2

Succ. Table

query(7)

33

DHT: Chord Summary

  Routing table size?
  Log N fingers

  Routing time?
 Each hop expects to 1/2 the distance to the

desired id => expect O(log N) hops.

  What is good/bad about Chord?

