
1

Peer-to-Peer Systems

Peer-to-Peer Systems

  Quickly grown in popularity:
  Dozens or hundreds of file sharing applications
  In 2004:

•  35 million adults used P2P networks – 29% of all Internet users in
USA

•  BitTorrent: a few million users at any given point
•  35% of Internet traffic is from BitTorrent

  Upset the music industry, drawn college students, web
developers, recording artists and universities into court

  But P2P is not new and is probably here to stay

  P2P is simply the next iteration of scalable distributed systems

2

3

Client-Server Communication

  Client “sometimes on”
  Initiates a request to the

server when interested
  E.g., Web browser on your

laptop or cell phone
  Doesn’t communicate

directly with other clients
  Needs to know the server’s

address

  Server is “always on”
  Services requests from

many client hosts
  E.g., Web server for the

www.cnn.com Web site
  Doesn’t initiate contact

with the clients
  Needs a fixed, well-known

address

4

Server Distributing a Large File

d1

F bits

d2

d3

d4

upload rate us

Download rates di

Internet

3

5

Server Distributing a Large File

  Server sending a large file to N receivers
  Large file with F bits
  Single server with upload rate us

  Download rate di for receiver i
  Server transmission to N receivers

  Server needs to transmit NF bits
  Takes at least NF/us time

  Receiving the data
  Slowest receiver receives at rate dmin= mini{di}
  Takes at least F/dmin time

  Download time: max{NF/us, F/dmin}

6

Speeding Up the File Distribution

  Increase the upload rate from the server
  Higher link bandwidth at the one server
  Multiple servers, each with their own link
  Requires deploying more infrastructure

  Alternative: have the receivers help
  Receivers get a copy of the data
  And then redistribute the data to other receivers
  To reduce the burden on the server

4

7

Peers Help Distributing a Large File

d1

F bits

d2

d3

d4

upload rate us

Download rates di

Internet

u1 u2
u3

u4

Upload rates ui

8

Peers Help Distributing a Large File

  Start with a single copy of a large file
  Large file with F bits and server upload rate us

  Peer i with download rate di and upload rate ui
  Two components of distribution latency

  Server must send each bit: min time F/us

  Slowest peer receives each bit: min time F/dmin

  Total upload time using all upload resources
  Total number of bits: NF
  Total upload bandwidth us + sumi(ui)

  Total: max{F/us, F/dmin, NF/(us+sumi(ui))}

5

9

Comparing the Two Models

  Download time
  Client-server: max{NF/us, F/dmin}
  Peer-to-peer: max{F/us, F/dmin, NF/(us+sumi(ui))}

  Peer-to-peer is self-scaling
  Much lower demands on server bandwidth
  Distribution time grows only slowly with N

  But…
  Peers may come and go
  Peers need to find each other
  Peers need to be willing to help each other

P2P vs. Youtube

  Let’s compare BitTorrent vs. Youtube
  Capacity to accept and store content:

  Youtube currently accepts 200K videos per day (or
about 1TB)

  1000 TV channels producing 1Mb/s translates to
about 10TB per day

6

P2P vs. Youtube

  BitTorrent capacity to serve the content
  Piratebay has 5M users at any given point in time
  Assume average lifetime of 6 hours and download of

0.5GB: total data served = 10,000 TB
  Factor of 2 for other p2p systems, total = 20,000 TB

  Youtube served 100M videos per day about an year back
  Assume that the number is 200M videos, average video

size is 5MB, total data served = 1000TB per day

P2P vs. Youtube

  Capacity to serve the content based on bandwidth
capacity

  Piratebay: 5M leechers, 5M seeders
  Assume average of 400Kbps per user
  Translates to about 4 Tbps

  Youtube: assume a 10 Gbps connection from data center
  Then need about 400 data centers to match the serving

capacity of BitTorrent

7

13

Challenges of Peer-to-Peer

  Peers come and go
  Peers are intermittently connected
  May come and go at any time
  Or come back with a different IP address

  How to locate the relevant peers?
  Peers that are online right now
  Peers that have the content you want

  How to motivate peers to stay in system?
  Why not leave as soon as download ends?
  Why bother uploading content to anyone else?

14

Locating the Relevant Peers

  Three main approaches
  Central directory (Napster)
  Query flooding (Gnutella)
  Hierarchical overlay (Kazaa, modern Gnutella)

  Design goals
  Scalability
  Simplicity
  Robustness
  Plausible deniability

8

15

Peer-to-Peer Networks: Napster

  Napster history: the rise
  January 1999: Napster version 1.0
  May 1999: company founded
  September 1999: first lawsuits
  2000: 80 million users

  Napster history: the fall
  Mid 2001: out of business due to lawsuits
  Mid 2001: dozens of P2P alternatives that were harder to touch,

though these have gradually been constrained
  2003: growth of pay services like iTunes

  Napster history: the resurrection
  2003: Napster reconstituted as a pay service
  2007: still lots of file sharing going on

Shawn Fanning,
Northeastern freshman

16

Napster Technology: Directory Service

  User installing the software
  Download the client program
  Register name, password, local directory, etc.

  Client contacts Napster (via TCP)
  Provides a list of music files it will share
  … and Napster’s central server updates the directory

  Client searches on a title or performer
  Napster identifies online clients with the file
  … and provides IP addresses

  Client requests the file from the chosen supplier
  Supplier transmits the file to the client
  Both client and supplier report status to Napster

9

17

Napster Technology: Properties
  Server’s directory continually updated

  Always know what music is currently available
  Point of vulnerability for legal action

  Peer-to-peer file transfer
  No load on the server
  Plausible deniability for legal action (but not enough)

  Proprietary protocol
  Login, search, upload, download, and status operations
  No security: cleartext passwords and other vulnerability

  Bandwidth issues
  Suppliers ranked by apparent bandwidth & response

time

18

Napster: Limitations of Central Directory

  Single point of failure
  Performance bottleneck
  Copyright infringement

  So, later P2P systems were more distributed
  Gnutella went to the other extreme…

 File transfer is
decentralized, but
locating content is
highly centralized

10

19

Peer-to-Peer Networks: Gnutella
  Gnutella history

  2000: J. Frankel &
T. Pepper released
Gnutella

  Soon after: many other
clients (e.g., Morpheus,
Limewire, Bearshare)

  2001: protocol
enhancements, e.g.,
“ultrapeers”

  Query flooding
  Join: contact a few nodes

to become neighbors
  Publish: no need!
  Search: ask neighbors,

who ask their neighbors
  Fetch: get file directly

from another node

20

Gnutella: Query Flooding
  Fully distributed

  No central server

  Public domain protocol
  Many Gnutella clients

implementing protocol

Overlay network: graph
  Edge between peer X

and Y if there’s a TCP
connection

  All active peers and
edges is overlay net

  Given peer will
typically be connected
with < 10 overlay
neighbors

11

21

Gnutella: Protocol

  Query message sent
over existing TCP
connections

  Peers forward
Query message

  QueryHit
sent over
reverse
path

Query

QueryHit

Query

QueryHit

File transfer:
HTTP

Scalability:
limited scope
flooding

22

Gnutella: Peer Joining

  Joining peer X must find some other peers
  Start with a list of candidate peers
  X sequentially attempts TCP connections with peers

on list until connection setup with Y
  X sends Ping message to Y

  Y forwards Ping message.
  All peers receiving Ping message respond with Pong

message
  X receives many Pong messages

  X can then set up additional TCP connections

12

23

Gnutella: Pros and Cons

  Advantages
  Fully decentralized
  Search cost distributed
  Processing per node permits powerful search

semantics
  Disadvantages

  Search scope may be quite large
  Search time may be quite long
  High overhead, and nodes come and go often

Aside: Search Time?

13

Aside: All Peers Equal?

56kbps Modem

10Mbps LAN

1.5Mbps DSL

56kbps Modem
56kbps Modem

1.5Mbps DSL

1.5Mbps DSL

1.5Mbps DSL

Aside: Network Resilience

Partial Topology Random 30% die Targeted 4% die

from Saroiu et al., MMCN 2002

14

27

Peer-to-Peer Networks: KaAzA

  KaZaA history
  2001: created by Dutch

company (Kazaa BV)
  Single network called

FastTrack used by other
clients as well

  Eventually the protocol
changed so other clients
could no longer talk to it

  Smart query flooding
  Join: on start, the client

contacts a super-node (and
may later become one)

  Publish: client sends list of files
to its super-node

  Search: send query to super-
node, and the super-nodes
flood queries among
themselves

  Fetch: get file directly from
peer(s); can fetch from multiple
peers at once

28

KaZaA: Exploiting Heterogeneity

  Each peer is either a group
leader or assigned to a group
leader
  TCP connection between

peer and its group leader
  TCP connections between

some pairs of group leaders
  Group leader tracks the

content in all its children

15

29

KaZaA: Motivation for Super-Nodes

  Query consolidation
  Many connected nodes may have only a few files
  Propagating query to a sub-node may take more time

than for the super-node to answer itself
  Stability

  Super-node selection favors nodes with high up-time
  How long you’ve been on is a good predictor of how

long you’ll be around in the future

30

Peer-to-Peer Networks: BitTorrent

  BitTorrent history and motivation
  2002: B. Cohen debuted BitTorrent
  Key motivation: popular content

• Popularity exhibits temporal locality (Flash Crowds)
• E.g., Slashdot effect, CNN Web site on 9/11, release

of a new movie or game

  Focused on efficient fetching, not searching
• Distribute same file to many peers
• Single publisher, many downloaders

  Preventing free-loading

16

31

BitTorrent: Simultaneous Downloading

  Divide large file into many pieces
  Replicate different pieces on different peers
  A peer with a complete piece can trade with other

peers
  Peer can (hopefully) assemble the entire file

  Allows simultaneous downloading
  Retrieving different parts of the file from different

peers at the same time
  And uploading parts of the file to peers
  Important for very large files

32

BitTorrent: Tracker

  Infrastructure node
  Keeps track of peers participating in the torrent

  Peers register with the tracker
  Peer registers when it arrives
  Peer periodically informs tracker it is still there

  Tracker selects peers for downloading
  Returns a random set of peers
  Including their IP addresses
  So the new peer knows who to contact for data

17

33

BitTorrent: Chunks

  Large file divided into smaller pieces
  Fixed-sized chunks
  Typical chunk size of 16KB - 256 KB

  Allows simultaneous transfers
  Downloading chunks from different neighbors
  Uploading chunks to other neighbors

  Learning what chunks your neighbors have
  Broadcast to neighbors when you have a chunk

  File done when all chunks are downloaded

34

BitTorrent: Overall Architecture

Web page
with link

to .torrent

A

B

C

Peer

[Leech]

Downloader

“US”

Peer

[Seed]

Peer

[Leech]

Tracker Web Server

18

35

BitTorrent: Overall Architecture

Web page
with link

to .torrent

A

B

C

Peer

[Leech]

Downloader

“US”

Peer

[Seed]

Peer

[Leech]

Tracker Web Server

36

BitTorrent: Overall Architecture

Web page
with link

to .torrent

A

B

C

Peer

[Leech]

Downloader

“US”

Peer

[Seed]

Peer

[Leech]

Tracker Web Server

19

37

BitTorrent: Overall Architecture

Web page
with link

to .torrent

A

B

C

Peer

[Leech]

Downloader

“US”

Peer

[Seed]

Peer

[Leech]

Tracker

Shake-hand

Web Server

38

BitTorrent: Overall Architecture

Web page
with link

to .torrent

A

B

C

Peer

[Leech]

Downloader

“US”

Peer

[Seed]

Peer

[Leech]

Tracker

pieces

Web Server

20

39

BitTorrent: Overall Architecture

Web page
with link

to .torrent

A

B

C

Peer

[Leech]

Downloader

“US”

Peer

[Seed]

Peer

[Leech]

Tracker

pieces

Web Server

40

BitTorrent: Overall Architecture

Web page
with link

to .torrent

A

B

C

Peer

[Leech]

Downloader

“US”

Peer

[Seed]

Peer

[Leech]

Tracker

pieces

Web Server

21

41

BitTorrent: Chunk Request Order

  Which chunks to request?
  Could download in order
  Like an HTTP client does

  Problem: many peers have the early chunks
  Peers have little to share with each other
  Limiting the scalability of the system

  Problem: eventually nobody has rare chunks
  E.g., the chunks need the end of the file
  Limiting the ability to complete a download

  Solutions: random selection and rarest first

42

Free-Riding Problem in P2P Networks

  Vast majority of users are free-riders
  Most share no files and answer no queries
  Others limit # of connections or upload speed

  A few “peers” essentially act as servers
  A few individuals contributing to the public good
  Making them hubs that basically act as a server

  BitTorrent prevent free riding
  Allow the fastest peers to download from you
  Occasionally let some free loaders download

22

43

Bit-Torrent: Preventing Free-Riding

  Peer has limited upload bandwidth
  And must share it among multiple peers

  Prioritizing the upload bandwidth
  Favor neighbors that are uploading at highest rate

  Rewarding the top four neighbors
  Measure download bit rates from each neighbor
  Reciprocates by sending to the top four peers
  Recompute and reallocate every 10 seconds

  Optimistic unchoking
  Randomly try a new neighbor every 30 seconds
  So new neighbor has a chance to be a better partner

Study BitTorrent’s Incentives

  First, construct a model to predict unreciprocated
altruism
  Measure large number of popular swarms
  Estimate fairness, altruism, and reciprocation behavior

23

Fairness

End-host capacities

24

Per-Peer Send Rates

Altruism

25

Reciprocation Probability

Methodology

  First, construct a model to predict unreciprocated
altruism
  Measure large number of popular swarms
  Estimate fairness, altruism, and reciprocation behavior

  Second, develop a strategic client: BitTyrant

26

BitTyrant: Strategic Peer Selection

Select peers and rates to maximize “return-on-investment”

BitTyrant Performance

Ratio of BitTyrant Download Time to Original Download Time

C
um

ul
at

iv
e

Fr
ac

ti
on

0 0.5 1 2 3

27

53

BitTorrent Today

  Well designed system with some incentives
  Significant fraction of Internet traffic

  Estimated at 30%
  Though this is hard to measure

  Problem of incomplete downloads
  Peers leave the system when done
  Many file downloads never complete
  Especially a problem for less popular content

  Still lots of legal questions remains
  Further need for incentives

Distributed Hash Tables (DHT):
History

  In 2000-2001, academic researchers jumped on to the P2P
bandwagon

  Motivation:
  Guaranteed lookup success for files in system (the search

problem that BitTorrent doesn’t address)
  Provable bounds on search time
  Provable scalability to millions of node

  Hot topic in networking ever since

28

DHT: Overview

  Abstraction: a distributed “hash-table” (DHT) data structure:
  put(id, item);
  item = get(id);

  Implementation: nodes in system form an interconnection
network
  Can be Ring, Tree, Hypercube, Butterfly Network, ...

DHT: Example - Chord

  Associate with each node and file a unique id in an uni-
dimensional space (a Ring)
  E.g., pick from the range [0...2m]
  Usually the hash of the file or IP address

  Properties:
  Routing table size is O(log N) , where N is the total number

of nodes
  Guarantees that a file is found in O(log N) hops

from MIT in 2001

29

DHT: Consistent Hashing

N32

N90

N105

K80

K20

K5

Circular ID space

Key 5
Node 105

A key is stored at its successor: node with next higher ID

DHT: Chord Basic Lookup

N32

N90

N105

N60

N10
N120

K80

“Where is key 80?”

“N90 has K80”

30

DHT: Chord “Finger Table”

N80

1/21/4

1/8

1/16
1/32
1/64
1/128

  Entry i in the finger table of node n is the first node that succeeds or
equals n + 2i

  In other words, the ith finger points 1/2n-i way around the ring

DHT: Chord Join

  Assume an identifier space [0..8]

  Node n1 joins

0
1

2

3
4

5

6

7
i id+2i succ
0 2 1
1 3 1
2 5 1

Succ. Table

31

DHT: Chord Join

  Node n2 joins
0

1

2

3
4

5

6

7
i id+2i succ
0 2 2
1 3 1
2 5 1

Succ. Table

i id+2i succ
0 3 1
1 4 1
2 6 1

Succ. Table

DHT: Chord Join

  Nodes n0, n6 join
0

1

2

3
4

5

6

7
i id+2i succ
0 2 2
1 3 6
2 5 6

Succ. Table

i id+2i succ
0 3 6
1 4 6
2 6 6

Succ. Table

i id+2i succ
0 1 1
1 2 2
2 4 0

Succ. Table

i id+2i succ
0 7 0
1 0 0
2 2 2

Succ. Table

32

DHT: Chord Join

  Nodes:
n1, n2, n0, n6

  Items:
f7, f1 0

1

2

3
4

5

6

7 i id+2i succ
0 2 2
1 3 6
2 5 6

Succ. Table

i id+2i succ
0 3 6
1 4 6
2 6 6

Succ. Table

i id+2i succ
0 1 1
1 2 2
2 4 0

Succ. Table
7

Items
1

Items

i id+2i succ
0 7 0
1 0 0
2 2 2

Succ. Table

7

DHT: Chord Routing

  Upon receiving a query for item
id, a node:

  Checks whether stores the item
locally

  If not, forwards the query to the
largest node in its successor
table that does not exceed id

0
1

2

3
4

5

6

7 i id+2i succ
0 2 2
1 3 6
2 5 6

Succ. Table

i id+2i succ
0 3 6
1 4 6
2 6 6

Succ. Table

i id+2i succ
0 1 1
1 2 2
2 4 0

Succ. Table

Items
1

Items

i id+2i succ
0 7 0
1 0 0
2 2 2

Succ. Table

query(7)

33

DHT: Chord Summary

  Routing table size?
  Log N fingers

  Routing time?
 Each hop expects to 1/2 the distance to the

desired id => expect O(log N) hops.

  What is good/bad about Chord?

