
1

CSE 461
HTTP and the Web

This Lecture

  HTTP and the Web (but not HTML)

  Focus
  How do Web transfers work?

  Topics
  HTTP, HTTP1.1
  Performance Improvements

• Protocol Latency
• Caching

Physical
Data Link
Network

Transport
Session

Presentation
Application

2

Web Protocol Stacks

  To view the URL http://server/page.html the client makes a
TCP connection to port 80 of the server, by it’s IP address,
sends the HTTP request, receives the HTML for page.html as
the response, repeats the process for inline images, and
displays it.

Ethernet
IP

TCP

HTTP
apache

Ethernet
IP

TCP

HTTP
Firefox request

response
OS

kernel

user
space

server client

HTTP Request/Response

3

Simple HTTP 1.0

  HTTP is a tiny, text-based language
  The GET method requests an object
  There are HTTP headers, like “Content-Length:”, etc.
  Try “telnet server 80” then “GET index.html HTTP/1.0”

  Other methods: POST, HEAD,… google for details

GET index.html

GET ad.gif

GET logo.gif

HTTP Request/Response in Action

  Problem is that:
  Web pages are made up of

many files
•  Most are very small (<

10k)
  files are mapped to

connections
  For each file

  Setup/Teardown
•  Time-Wait table bloat

  2RTT “first byte” latency
  Slow Start+ AIMD Congestion

Avoidance
  The goals of HTTP and TCP

protocols are not aligned.

4

TCP Behavior for Short Connections
Over Slow Networks

RTT=70ms

It’s the RTT

RTT=1ms

No slow start here (ULTRIX LAN)

5

HTTP1.1: Persistent Connections

  Idea: Use one TCP connection for multiple page downloads
(or just HTTP methods)

  Q: What are the advantages?
  Q: What are the disadvantages?

  Application layer multiplexing

GET index.html GET ad.gif …

HTTP/1.1

6

Effect of Persistent HTTP

Image size=2544

Image size=45566

Caching

  It is faster and cheaper to get data that is closer to here
than closer to there.

  “There” is the origin server. 2-5 RTT
  “Here” can be:

  Local browser cache (file system) (1-10ms)
  Client-side proxy (institutional proxy) (10-50)
  Content-distribution network (CDN -- “cloud” proxies)

(50-100)
  Server-side proxy (reverse proxy @ origin server)

(2-5RTT)

7

Browser Caches

  Bigger win: avoid repeated transfers of the same page
  Check local browser cache to see if we have the page
  GET with If-Modified-Since makes sure it’s up-to-date

Cache

“Changed?”

“Here it is.” or “Same.”

Consistency and Caching Directives

  Browsers typically use heuristics
  To reduce server connections and hence realize benefits
  Check freshness once a “session” with GET If-Modified-

Since and then assume it’s fresh the rest of the time
  Possible to have inconsistent data.

  Key issue is knowing when cached data is fresh/stale
  Otherwise many connections or the risk of staleness

  Caching directives provide hints
  Expires: header is basically a time-to-live
  Also indicate whether page is cacheable or not

8

Proxy
Cache

Proxy Caches

  Insert further levels of caching for greater gain
  Share proxy caches between many users (not shown)

  If I haven’t downloaded it recently, maybe you have
  Your browser has built-in support for this

Cache

“Changed?”

“Here it is.”
or “Same.”

“Changed?”

“Here it is.”
or “Same.”

Proxy Cache Effectiveness

?

?

9

Sharing, Not Locality, Drives
Effectiveness

The Trends

  HTTP Objects are getting bigger
  But Less important

10

Key Concepts

  HTTP and the Web is just a shim on top of TCP
  Sufficient and enabled rapid adoption
  Many “scalability” and performance issues now

important

