
CSE/EE 461

TCP and network congestion

This Lecture

 Focus
 How should senders pace

themselves to avoid stressing the
network?

 Topics
 congestion collapse
 congestion control

Physical
Data Link
Network

Transport
Session

Presentation
Application

 Buffers at routers used to absorb bursts when input rate > output
 Loss (drops) occur when sending rate is persistently > drain rate

Destination
1.5-Mbps T1 link

Router

Source
2

Source
1

100-Mbps FDDI

10-Mbps Ethernet

Congestion from in the network

Packets queued here

Congestion Collapse

 In the limit, premature retransmissions lead to congestion collapse
 e.g., 1000x drop in effective bandwidth of network
 sending more packets into the network when it is overloaded

exacerbates the problem of congestion (overflow router queues)
 network stays busy but very little useful work is being done

 This happened in real life ~1987
 Led to Van Jacobson’s TCP algorithms

• these form the basis of congestion control in the Internet today
 Researchers asked two questions:

• Was TCP misbehaving?
• Could TCP be “trained” to work better under ‘absymal network conditions?’

A Scenario

Receiver window size is 16KB.

Bottleneck router buffer size is
15 KB.

Data bandwidth is about 20KB/s

Slope is bandwidth.

Steep smooth upward
slope == means good
bandwidth.

Downward slope means
retransmissions (bad).

Effects of early retransmission

If only…

 We knew RTT and Current Router Queue Size,
 then we would send:

MIN(Router Queue Size, Effective Window Size)

 and not retransmit a packet until it had been sent
RTT ago.

 But we don’t know these things

 so we have to estimate them

 They change over time because of other data sources
 so we have to continually adapt them

Ideal packet flow: stable equilibrium

Pr = Interpacket spacing --> mirrors that of slowest link

As = Inter-ACK spacing --> mirrors that of slowest downstream link

Modern TCP in previous scenario

Notice:

• no retransmissions,
(and thus no packet loss)

• achieved BW =
bottleneck BW

1988 Observations on Congestion
Collapse

 Implementation, not the protocol, leads to collapse
 choices about when to retransmit, when to “back off” because of losses

 “Obvious” ways of doing things lead to non-obvious and undesirable results
 “send effective-window-size # packets, wait RTT, try again”

 Remedial algorithms achieve network stability by forcing the transport connection to
obey a ‘packet conservation’ principle.
 for connection in equilibrium (stable with full window in transit), packet flow is conservative

• a new packet not put in network until an old packet leaves

Resulting TCP/IP Improvements

 Slow-start
 Round-trip time variance estimation
 Exponential retransmit timer backoff
 More aggressive receiver ack policy
 Dynamic window sizing on congestion
 Clamped retransmit backoff (Karn)
 Fast Retransmit

Packet Conservation
Principle

Congestion control means: “Finding places that violate the
conservation of packets principle and then fixing them.”

Key ideas

 Routers queue packets
 if queue overflows, packet loss occurs
 happens when network is “congested”

 Retransmissions deal with loss
 need to retransmit sensibly

• too early: needless retransmission
• too late: lost bandwidth

 Senders must control their transmission pace
 flow control: send no more than receiver can

handle
 congestion control: send no more than network

can handle

Basic rules of TCP congestion
control

1. The connection must reach equilibrium.
– hurry up and stabilize!
– when things get wobbly, put on the brakes and reconsider

2. Sender must not inject a new packet before an old packet has left
– a packet leaves when the receiver picks it up,
– or if it gets lost.

• damaged in transit or dropped at congested point
• (far fewer than 1% of packets get damaged in practice)

– ACK or packet timeout signals that a packet has “exited.”
– ACK are easy to detect.
– appropriate timeouts are harder…. all about estimating RTT.

3. Equilibrium is lost because of resource contention along the way.
– new competing stream appears, must restabilize

1. The connection must reach equilibrium.

1. Getting to Equilibrium -- Slow
Start

 Goal
 Quickly determine the appropriate window size

• Basically, we’re trying to sense the bottleneck bandwidth

 Strategy
 Introduce congestion_window (cwnd)
 When starting off, set cwnd to 1
 For each ACK received, add 1 to cwnd
 When sending, send the minimum of receiver’s advertised window and

cwnd

 Guaranteed to not transmit at more than twice the max BW, and for no
more than RTT.
 (bw delay product)

Cwnd doubles every RTT;

Opening a window of size

W takes time (RTT)log2W.

Slow Start

 Note that the effect is to double transmission rate every
RTT
 This is ‘slow’?

 Basically an effective way to probe for the bottleneck
bandwidth, using packet losses as the feedback
 No change in protocol/header was required to

implement

 When do you need to do this kind of probing?

2. A sender must not inject a new packet before an old packet has exited.

2. Packet Injection. Estimating
RTTs

 Do not inject a new packet until an old packet has left.
 1. ACK tells us that an old packet has left.
 2. Timeout expiration tells us as well.

• We must estimate RTT properly.

 Strategy 1: pick some constant RTT.
 simple, but probably wrong. (certainly not adaptive)

 Strategy 2: Estimate based on past behavior.

Tactic 0: Mean
Tactic 1: Mean with something??

Original TCP (RFC793)
retransmission timeout algorithm

 Use EWMA to estimate RTT:

EstimatedRTT = (1-g)(EstimatedRTT) +
g(SampleRTT)

0 ≤ g ≤ 1, usually g = .1 or .2

 Conservatively set timeout to small multiple (2x) of the estimate

Retransmission Timeout = 2 x EstimatedRTT

Jacobson/Karels Algorithm

1. DevRTT = (1-b) * DevRTT + b * |SampledRTT - EstimatedRTT|
• typically, b = .25

2. Retransmission timeout = EstimatedRTT + k * DevRTT
 k is generally set to 4

 timeout =~ EstimatedRTT when variance is low (estimate is
good)

3. Equilibrium is lost because of resource contention along the way.

Source
2

100-Mbps FDDI

Congestion from Multiple Sources

Destination
1.5-Mbps T1 link

Router

Source
1 10-Mbps Ethernet

Packets queued here

Packets Lost Here

In Real Life

Four Simultaneous Streams

TCP is “Self-Clocking”

 ACKs pace transmissions at approximately the botteneck
rate
 So just by sending packets we can discern the “right”

sending rate (called the packet-pair technique)

Sink
45 Mbps T3 linkRouter

Source
100 Mbps Ethernet

Congestion Control Relies on
Signals from the Network

 The network is not saturated: Send even more
 The network is saturated: Send less

 ACK signals that the network is not saturated.
 A lost packet (no ACK) signals that the network is saturated
 Leads to a simple strategy:

 On each ack, increase congestion window (additive increase)
 On each lost packet, decrease congestion window (multiplicative decrease)

 Why increase slowly and decrease quickly?
 Respond to good news conservatively, but bad news aggressively

AIMD (Additive Increase/Multiplicative
Decrease)

 How to adjust probe rate?

 Increase slowly while we
believe there is bandwidth
 Additive increase per RTT
 Cwnd += 1 packet / RTT

 Decrease quickly when there
is loss (went too far!)
 Multiplicative decrease
 Cwnd /= 2

Source Destination

…

With Additive
Increase/Multiplicative Decrease

TCP Sawtooth Pattern

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

C
w

nd
 (K

B
)

T ime (seconds)

70

30
40
50

10

10.0

Comparing to “Slow Start”

 Q: What is the ideal value of cwnd? How
long will AIMD take to get there?

 Use a different strategy to get close to
ideal value
 Slow start:

• Double cwnd every RTT
– cwnd *= 2 per RTT
– i.e., cwnd += 1 per ACK

 AIMD:
• add one to cwnd per RTT

– cwnd +=1 per RTT
– i.e., cwnd += (1/cwnd) per ACK

Source Destination

…

Combining Slow Start and AIMD

 Slow start is used whenever the connection is not running with packets
outstanding
 initially, and after timeouts indicating that there’s no data on the wire

 But we don’t want to overshoot our ideal cwnd on next slow start, so
remember the last cwnd that worked with no loss
 ssthresh = cwnd after cwnd /= 2 on loss
 switch to AIMD once cwnd passes ssthresh

ssthresh

Example (Slow Start +AIMD)

Time (seconds)

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

K
B

70

30
40
50

10

Timeout Timeout Timeout

Packets that will be lostSlowstart
AIMD

The Long Timeout Problem

 Would like to “signal” a lost packet earlier than timeout
 enable retransmit sooner

 Can we infer that a packet has been lost?
 Receiver receives an “out of order packet”
 Good indicator that the one(s) before have been

misplaced
 Receiver generates a duplicate ack on receipt of a

misordered packet
 Sender interprets sequence of duplicate acks as a signal

that the as-yet-unacked packet has not arrived

Fast Retransmit

 TCP uses cumulative
acks, so duplicate acks
start arriving after a
packet is lost.

 We can use this fact to
infer which packet was
lost, instead of waiting
for a timeout.

 3 duplicate acks are used
in practice

Packet 1

Packet 2
Packet 3
Packet 4

Packet 5

Packet 6

Retransmit
packet 3

ACK 1

ACK 2

ACK 2

ACK 2

ACK 6

ACK 2

Sender Receiver

Example (with Fast Retransmit)

Time (seconds)

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0

K
B

70

30
40
50

10

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

K
B

70

30
40
50

10

Timeout Timeout Timeout

FT

NO FT

Fast Recovery

 After Fast Retransmit, use further duplicate acks to grow
cwnd and clock out new packets, since these acks
represent packets that have left the network.

 End result: Can achieve AIMD when there are single
packet losses. Only slow start the first time and on a real
timeout.

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0

K
B

70

30
40
50

10

Key Concepts

 Packet conservation is a fundamental concept in TCP’s
congestion management
 Get to equilibrium

• Slow Start

 Do nothing to get out of equilibrium
• Good RTT Estimate

 Adapt when equilibrium has been lost due to other’s
attempts to get to/stay in equilibrium

• Additive Increase/Multiplicative Decrease

 The network reveals its own behavior

Repeating Slow Start After Idle Period

 Suppose a TCP connection goes idle for a while
 E.g., Telnet session where you don’t type for an hour

 Eventually, the network conditions change
 Maybe many more flows are traversing the link
 E.g., maybe everybody has come back from lunch!

 Dangerous to start transmitting at the old rate
 Previously-idle TCP sender might blast the network
 … causing excessive congestion and packet loss

 So, some TCP implementations repeat slow start
 Slow-start restart after an idle period

TCP Achieves Some Notion of Fairness

 Effective utilization is not the only goal
 We also want to be fair to the various flows
 … but what the heck does that mean?

 Simple definition: equal shares of the bandwidth
 N flows that each get 1/N of the bandwidth?
 But, what if the flows traverse different paths?
 E.g., bandwidth shared in proportion to the RTT

What About Cheating?

 Some folks are more fair than others
 Running multiple TCP connections in parallel
 Modifying the TCP implementation in the OS
 Use the User Datagram Protocol

 What is the impact
 Good guys slow down to make room for you
 You get an unfair share of the bandwidth

 Possible solutions?
 Routers detect cheating and drop excess packets?
 Peer pressure?
 ???

Queuing Mechanisms

Random Early Detection (RED)
Explicit Congestion Notification (ECN)

Bursty Loss From Drop-Tail Queuing

 TCP depends on packet loss
 Packet loss is the indication of congestion
 In fact, TCP drives the network into packet loss
 … by continuing to increase the sending rate

 Drop-tail queuing leads to bursty loss
 When a link becomes congested…
 … many arriving packets encounter a full queue
 And, as a result, many flows divide sending rate in half
 … and, many individual flows lose multiple packets

Slow Feedback from Drop Tail

 Feedback comes when buffer is completely full
 … even though the buffer has been filling for a while

 Plus, the filling buffer is increasing RTT
 … and the variance in the RTT

 Might be better to give early feedback
 Get one or two connections to slow down, not all of them
 Get these connections to slow down before it is too late

Random Early Detection (RED)

 Basic idea of RED
 Router notices that the queue is getting backlogged
 … and randomly drops packets to signal congestion

 Packet drop probability
 Drop probability increases as queue length increases
 If buffer is below some level, don’t drop anything
 … otherwise, set drop probability as function of queue

Average Queue Length

Pr
ob

ab
ili

ty

Properties of RED

 Drops packets before queue is full
 In the hope of reducing the rates of some flows

 Drops packet in proportion to each flow’s rate
 High-rate flows have more packets
 … and, hence, a higher chance of being selected

 Drops are spaced out in time
 Which should help desynchronize the TCP senders

 Tolerant of burstiness in the traffic
 By basing the decisions on average queue length

Problems With RED

 Hard to get the tunable parameters just right
 How early to start dropping packets?
 What slope for the increase in drop probability?
 What time scale for averaging the queue length?

 Sometimes RED helps but sometimes not
 If the parameters aren’t set right, RED doesn’t help
 And it is hard to know how to set the parameters

 RED is implemented in practice
 But, often not used due to the challenges of tuning

right
 Many variations in the research community

 With cute names like “Blue” and “FRED”…

Explicit Congestion Notification

 Early dropping of packets
 Good: gives early feedback
 Bad: has to drop the packet to give the feedback

 Explicit Congestion Notification
 Router marks the packet with an ECN bit
 … and sending host interprets as a sign of congestion

 Surmounting the challenges
 Must be supported by the end hosts and the routers
 Requires two bits in the IP header (one for the ECN

mark, and one to indicate the ECN capability)
 Solution: borrow two of the Type-Of-Service bits in

the IPv4 packet header

Other TCP Mechanisms

Nagle’s Algorithm and Delayed ACK

Motivation for Nagle’s Algorithm

 Interactive applications
 Telnet and rlogin
 Generate many small packets (e.g., keystrokes)

 Small packets are wasteful
 Mostly header (e.g., 40 bytes of header, 1 of data)

 Appealing to reduce the number of packets
 Could force every packet to have some minimum size
 … but, what if the person doesn’t type more

characters?
 Need to balance competing trade-offs

 Send larger packets
 … but don’t introduce much delay by waiting

Nagle’s Algorithm

 Wait if the amount of data is small
 Smaller than Maximum Segment Size (MSS)

 And some other packet is already in flight
 I.e., still awaiting the ACKs for previous packets

 That is, send at most one small packet per RTT
 … by waiting until all outstanding ACKs have arrived

 Influence on performance
 Interactive applications: enables batching of bytes
 Bulk transfer: transmits in MSS-sized packets anyway

vs.

ACK

Motivation for Delayed ACK

 TCP traffic is often bidirectional
 Data traveling in both directions
 ACKs traveling in both directions

 ACK packets have high overhead
 40 bytes for the IP header and TCP header
 … and zero data traffic

 Piggybacking is appealing
 Host B can send an ACK to host A
 … as part of a data packet from B to A

