TCP and network congestion

This Lecture

= Focus
= How should senders pace Application
themselves to avoid stressing the |Presentation
network? Session
= Topics Network
- congestion collapse Data Link
Physical

= congestion control

Congestion from in the network

Router : : :
LI 1.5-Mbps T1 link

T

Packets queued here

= Buffers at routers used to absorb bursts when input rate > output
= Loss (drops) occur when sending rate is persistently > drain rate

Congestion Collapse

= In the limit, premature retransmissions lead to congestion collapse
= e.g., 1000x drop in effective bandwidth of network

= sending more packets into the network when it is overloaded
exacerbates the problem of congestion (overflow router queues)

= network stays busy but very little useful work is being done

= This happened in real life ~1987
= Led to Van Jacobson’s TCP algorithms
o these form the basis of congestion control in the Internet today
= Researchers asked two questions:
e Was TCP misbehaving?
e Could TCP be “trained” to work better under ‘absymal network conditions?’

A Scenario

Sender Receiver
P;Io \ /;e;u;l-r\‘
sun 3’5}‘ \lax 7“9 Receiver window size is 16KB.
@,;‘g}s}_ _(ﬁ:;‘%ggm Bottleneck router buffer size is
7 SN e N N 15KB.
\20dtee —
— BV AR\ -~ Databandwidth is about 20KBJs
Surf — — M
@m%lsy— — (va)(<J |;?O))
s N
Vs / Okeefe ™
@n g/sb— - (cegl)e)
N N

T 10 Mbs Ethernets —

Effects of eatly retransmission

bottleneck bandwidth

Slope is bandwidth.

50

Steep smooth upward
slope == means good
bandwidth.

a0

achieved bandwidth

30

Packet sequence # (KB)

Downward slope means
retransmissions (bad).

10

TIME (SEC)

If only...

= We knew RTT and Current Router Queue Size,
= then we would send:

MIN(Router Queue Size, Effective Window Size)
= and not retransmit a packet until it had been sent
RTT ago.

= But we dont know these things
= S0 we have to estimate them

= They change over time because of other data sources
= s0 we have to continually adapt them

Ideal packet flow: stable equilibrium

Pr = Interpacket spacing --> mirrors that of slowest link

._r_|

— Pp—

~l==1H

Sender Receiver

- Ag— A

S T

As = Inter-ACK spacing --> mirrors that of slowest downstream link

Modern TCP in previous scenario

bottleneck bandwidth

140 160

120

Notice:

100

* no retransmissions,
(and thus no packet loss)

80

« achieved BW =
bottleneck BW

Packet sequence # (KB)

6 8 10

"nimE (SEC)

1988 Observations on Congestion
Collapse

= Implementation, not the protocol, leads to collapse
= choices about when to retransmit, when to “back off” because of losses

= “Obvious” ways of doing things lead to non-obvious and undesirable results
= “send effective-window-size # packets, wait RTT, try again”

= Remedial algorithms achieve network stability by forcing the transport connection to
obey a ‘packet conservation’ principle.
= for connection in equilibrium (stable with full window in transit), packet flow is conservative
e a new packet not put in network until an old packet leaves

Resulting TCP/IP Improvements

= Slow-start

= Round-trip time variance estimation

= Exponential retransmit timer backoff

= More aggressive receiver ack policy P onenvaton
= Dynamic window sizing on congestion

= Clamped retransmit backoff (Karn)

= Fast Retransmit

Congestion control means: “Finding places that violate the
conservation of packets principle and then fixing them.”

Key ideas

= Routers queue packets
= if queue overflows, packet loss occurs
= happens when network is “congested”

= Retransmissions deal with loss

= need to retransmit sensibly
e too early: needless retransmission
¢ too late: lost bandwidth

= Senders must control their transmission pace

= flow control: send no more than receiver can
handle

= congestion control: send no more than network
can handle

Basic rules of TCP congestion
control

1. The connection must reach equilibrium.
- hurry up and stabilize!
- when things get wobbly, put on the brakes and reconsider

2. Sender must not inject a new packet before an old packet has left
- a packet leaves when the receiver picks it up,
- orif it gets lost.
» damaged in transit or dropped at congested point
e (far fewer than 1% of packets get damaged in practice)
- ACK or packet timeout signals that a packet has “exited.”
— ACK are easy to detect.
— appropriate timeouts are harder.... all about estimating RTT.

3. Equilibrium is lost because of resource contention along the way.
- new competing stream appears, must restabilize

1. The connection must reach equilibrium.

1. Getting to Equilibrium -- Slow
Start

= Goal
= Quickly determine the appropriate window size
¢ Basically, we're trying to sense the bottleneck bandwidth

= Strategy
= Introduce congestion _window (cwnd)
= When starting off, set cwnd to 1
= For each ACK received, add 1 to cwnd
. Whedn sending, send the minimum of receiver’s advertised window and
cwn

= Guaranteed to not transmit at more than twice the max BW, and for no
more than RTT.

= (bw delay product)

Figure 2: The Chronology of a Slow-start

" @

(_— One Packet Time

1R [©)]
Cwnd doubles every RTT;
Opening a window of size
W takes time (RTT)log,W. _

2R 2 (3

sp @6 @ @

The horizontal direction is time. The continuous time line has been chopped into one-
round-trip-time picces stacked vertically with increasing time going down the page. The
grey, numbered boxes are packets. The white numbered boxes are the corresponding acks.
As cach ack arrives, two packets are generated: one for the ack (the ack says a packet has
left the system so a new packet is added to take its place) and one because an ack opens
the congestion window by one packet. It may be clear from the figure why an add-one-
packet-to-window policy opens the window exponentially in time.

f=—————One Round Trip Time ——— ——]

Slow Start

Note that the effect is to double transmission rate every
RTT

= This is ‘slow’?

= Basically an effective way to probe for the bottleneck
bandwidth, using packet losses as the feedback

= No change in protocol/header was required to
implement

= When do you need to do this kind of probing?

2. A sender must not inject a new packet before an old packet has exited.

2. Packet Injection. Estimating
RTTSs

Do not inject a new packet until an old packet has left.
= 1. ACK tells us that an old packet has left.
= 2. Timeout expiration tells us as well.
o We must estimate RTT properly.

Strategy 1: pick some constant RTT.
= simple, but probably wrong. (certainly not adaptive)

Strategy 2: Estimate based on past behavior.

Tactic 0: Mean
Tactic 1: Mean with something??

Original TCP (RFC793)
retransmission timeout algorithm

Use EWMA to estimate RTT:

EstimatedRTT = (1-g)(EstimatedRTT) +
g(SampleRTT)

0<g< 1, usuallyg =.1o0r.2

Conservatively set timeout to small multiple (2x) of the estimate

Retransmission Timeout = 2 x EstimatedRTT

Figure 5: Performance of an RFC793 retransmit timer

12

10
T

retransmission timeout

6

RTT (sec.)

San‘ipled A

60 70 80 90 100
Packet
Loaded Region

110

Jacobson/Karels Algorithm

1. DevRTT = (1-b) * DevRTT + b * |SampledRTT - EstimatedRTT|

e typically, b = .25

2. Retransmission timeout = EstimatedRTT + k * DevRTT

= kis generally set to 4

= timeout =~ EstimatedRTT when variance is low (estimate is

good)

Estimate with Mean + Variance

Figure §: Parformance of an RFC793 retransmit timer
e 6: Performance of a Mean+Variance retransmit timer
£
° o 10 20 30 40 50 60 70 80 90 100 110
Packet

3. Equilibrium is lost because of resource contention along the way.

Congestion from Multiple Sources

Router : : :
1.5-Mbps T1 link

T

Packets queued here

Packets Lost Here

In Real Life

Sender Receiver

>

Polo Renoir
@n 31@— —@ 750)

S —t/cs arn\ 2304 Kbs Ca nan\— T
Mi

a | NN]

(o — ()

(Vs > O;ee@
(sun 3/50) - (CCl)

~ -

— -
" 10 Mbs Ethernets —

Four Simultaneous Streams

Figure 8: Multiple, simultaneous TCPs with no congestion avoidance

§

800

Number (KB}

6800
T

Time (sec)

TCP is “Self-Clocking”

[
(I (O . [n
100 Mbps Ethernet Router <45 Mbps T3 link
] 1] 1] 1] 1] 1]

= ACKs pace transmissions at approximately the botteneck

rate

= So just by sending packets we can discern the “right”
sending rate (called the packet-pair technique)

Congestion Control Relies on
Signals from the Network

The network is not saturated: Send even more
The network is saturated: Send less

ACK signals that the network is not saturated.
A lost packet (no ACK) signals that the network is saturated
Leads to a simple strategy:
On each ack, increase congestion window (additive increase)
On each lost packet, decrease congestion window (multiplicative decrease)
Why increase slowly and decrease quickly?
Respond to good news conservatively, but bad news aggressively

AIMD (Additive Increase/Multiplicative

Decrease)

Source Destination

How to adjust probe rate?

Increase slowly while we
believe there is bandwidth

= Additive increase per RTT
= Cwnd += 1 packet / RTT

Decrease quickly when there
is loss (went too far!)

= Multiplicative decrease
= Cwnd /=2

With Additive
Increase /Multiplicative Decrease

i smutansous TCPs vit o conaesten woiance ke 9: Multiple, simultaneous TCPs with congestion avoidance

Time (sec)

TCP Sawtooth Pattern

T T
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

Time (seconds)

Comparing to “Slow Start”

Q: What is the ideal value of cwnd? How Source Destination
long will AIMD take to get there?

Use a different strategy to get close to
ideal value
= Slow start:
e Double cwnd every RTT
- cwnd *=2 per RTT
— i.e, cwnd +=1 per ACK
= AIMD:
e add one to cwnd per RTT
— cwnd +=1 per RTT
- i.e., cwnd += (1/cwnd) per ACK

Combining Slow Start and AIMD

ssthresh

Slow start is used whenever the connection is not running with packets
outstanding

= initially, and after timeouts indicating that there’s no data on the wire

But we don't want to overshoot our ideal cwnd on next slow start, so
remember the last cwnd that worked with no loss

= ssthresh = cwnd after cwnd /= 2 on loss
= switch to AIMD once cwnd passes ssthresh

Example (Slow Start +AIMD)

KB

Timeout Timeout Timeout
70— iy b it S
60
50
40
30
20 =
10
4
T T T T y T T 1
.0 A 3.0 4.0 0 6. . 8. 9.0
ime (seconds
AIMD

Slowstart Packets that will be lost

The Long Timeout Problem

III

Would like to “'signal” a lost packet earlier than timeout
= enable retransmit sooner

Can we infer that a packet has been lost?
= Receiver receives an “out of order packet”

= Good indicator that the one(s) before have been
misplaced

Receiver generates a duplicate ack on receipt of a

misordered packet

Sender interprets sequence of duplicate acks as a signal
that the as-yet-unacked packet has not arrived

Fast Retransmit

= TCP uses cumulative
acks, so duplicate acks
start arriving after a
packet is lost.

= We can use this fact to
infer which packet was
lost, instead of waiting
for a timeout.

Sender

Packet 1
Packet 2
Packet 3
Packet 4

Packet 5
Packet 6

= 3 duplicate acks are used

in practice

Retransmit
packet 3

\

T

§ ACK 2
ACK 6

Receiver

ACK 1
ACK 2

ACK 2

ACK 2

Example (with Fast Retransmit)

7 i |
6
5 FT
@ 4
3
2
) /
T T T T T T 1
1.0 2.0 3.0 4.0 5.0 6.0 7.0
Timeout Timeout Timeout
70 [% % ﬁl\l\lll\l\\\nl\l\l\HI\IHIIMIHIII\I I
60 NO FT Time (seconds)
o 50
¥ 40
30
20
10
T T T T T T T 1
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

Fast Recovery

= After Fast Retransmit, use further duplicate acks to grow
cwnd and clock out new packets, since these acks
represent packets that have left the network.

= End result: Can achieve AIMD when there are single
packet losses. Only slow start the first time and on a real

timeout.
7 LT i ANIINRRNNIAAUIMOUAN |
6
5
© 4
3
: _— [
1‘ 0 2l 0 3‘.0 4‘.0 é 0 6| 0 % 0
Key Concepts

= Packet conservation is a fundamental concept in TCP’s
congestion management
= Get to equilibrium
o Slow Start
= Do nothing to get out of equilibrium
e Good RTT Estimate
= Adapt when equilibrium has been lost due to other’s
attempts to get to/stay in equilibrium
o Additive Increase/Multiplicative Decrease
= The network reveals its own behavior

Repeating Slow Start After Idle Period

= Suppose a TCP connection goes idle for a while
= E.g., Telnet session where you don't type for an hour
= Eventually, the network conditions change
= Maybe many more flows are traversing the link
= E.g., maybe everybody has come back from lunch!
= Dangerous to start transmitting at the old rate
= Previously-idle TCP sender might blast the network
= ... causing excessive congestion and packet loss
= So, some TCP implementations repeat slow start
= Slow-start restart after an idle period

TCP Achieves Some Notion of Fairness

= Effective utilization is not the only goal
= We also want to be fair to the various flows
= ... but what the heck does that mean?
= Simple definition: equal shares of the bandwidth
= N flows that each get 1/N of the bandwidth?
= But, what if the flows traverse different paths?
= E.g., bandwidth shared in proportion to the RTT

N S

|
J

What About Cheating?

= Some folks are more fair than others
= Running multiple TCP connections in parallel
= Modifying the TCP implementation in the OS
= Use the User Datagram Protocol
= What is the impact
= Good guys slow down to make room for you
= You get an unfair share of the bandwidth
= Possible solutions?
= Routers detect cheating and drop excess packets?

= Peer pressure?
. 777

Queuing Mechanisms

Random Early Detection (RED)
Explicit Congestion Notification (ECN)

Bursty Loss From Drop-Tail Queuing

= TCP depends on packet loss

= Packet loss is the indication of congestion
= In fact, TCP drives the network into packet loss
= ... by continuing to increase the sending rate

Drop-tail queuing leads to bursty loss
= When a link becomes congested...
= ... many arriving packets encounter a full queue
= And, as a result, many flows divide sending rate in half
= ... and, many individual flows lose multiple packets

l[|—>>

Slow Feedback from Drop Tail

= Feedback comes when buffer is completely full
= ... even though the buffer has been filling for a while
= Plus, the filling buffer is increasing RTT
= ... and the variance in the RTT
Might be better to give early feedback
= Get one or two connections to slow down, not all of them
= Get these connections to slow down before it is too late

i—>

Random Eatrly Detection (RED)

= Basic idea of RED
= Router notices that the queue is getting backlogged
= ... and randomly drops packets to signal congestion
= Packet drop probability
= Drop probability increases as queue length increases
= If buffer is below some level, don't drop anything
= ... otherwise, set drop probability as function of queue

>
»

>
|

Probability

Average Queue Length

Properties of RED

Drops packets before queue is full

= In the hope of reducing the rates of some flows
Drops packet in proportion to each flow’s rate

= High-rate flows have more packets

= ... and, hence, a higher chance of being selected
Drops are spaced out in time

= Which should help desynchronize the TCP senders
Tolerant of burstiness in the traffic

= By basing the decisions on average queue length

Problems With RED

Hard to get the tunable parameters just right

= How early to start dropping packets?

= What slope for the increase in drop probability?

= What time scale for averaging the queue length?
Sometimes RED helps but sometimes not

= If the parameters aren't set right, RED doesn't help
= And it is hard to know how to set the parameters
RED is implemented in practice

. BUF{ often not used due to the challenges of tuning

right
Many variations in the research community
= With cute names like "Blue” and “FRED"... ©

Explicit Congestion Notification

= Early dropping of packets
= Good: gives early feedback
= Bad: has to drop the packet to give the feedback
= Explicit Congestion Notification
= Router marks the packet with an ECN bit
= ... and sending host interprets as a sign of congestion
= Surmounting the challenges
= Must be supported by the end hosts and the routers
= Requires two bits in the IP header (one for the ECN
mark, and one to indicate the ECN capability)

= Solution: borrow two of the Type-Of-Service bits in
the IPv4 packet header

Other TCP Mechanisms

Nagle’s Algorithm and Delayed ACK

Motivation for Nagle’s Algorithm

Interactive applications

= Telnet and rlogin

= Generate many small packets (e.g., keystrokes)
Small packets are wasteful

= Mostly header (e.g., 40 bytes of header, 1 of data)
Appealing to reduce the number of packets

= Could force every packet to have some minimum size

= ... but, what if the person doesn’t type more
characters?

Need to balance competing trade-offs
= Send larger packets
= ... but don't introduce much delay by waiting

Nagle’s Algorithm

= Wait if the amount of data is small
= Smaller than Maximum Segment Size (MSS)
= And some other packet is already in flight
= I.e., still awaiting the ACKs for previous packets
= That is, send at most one small packet per RTT
= ... by waiting until all outstanding ACKs have arrived

CK
HE EE v 1l L-

= Influence on performance
= Interactive applications: enables batching of bytes
= Bulk transfer: transmits in MSS-sized packets anyway

Motivation for Delayed ACK

= TCP traffic is often bidirectional
= Data traveling in both directions
= ACKs traveling in both directions
= ACK packets have high overhead
= 40 bytes for the IP header and TCP header
= ... and zero data traffic
= Piggybacking is appealing
= Host B can send an ACK to host A
= ... as part of a data packet from B to A

