
CSE/EE 461

TCP and network congestion

This Lecture

 Focus
 How should senders pace

themselves to avoid stressing the
network?

 Topics
 congestion collapse
 congestion control

Physical
Data Link
Network

Transport
Session

Presentation
Application

 Buffers at routers used to absorb bursts when input rate > output
 Loss (drops) occur when sending rate is persistently > drain rate

Destination
1.5-Mbps T1 link

Router

Source
2

Source
1

100-Mbps FDDI

10-Mbps Ethernet

Congestion from in the network

Packets queued here

Congestion Collapse

 In the limit, premature retransmissions lead to congestion collapse
 e.g., 1000x drop in effective bandwidth of network
 sending more packets into the network when it is overloaded

exacerbates the problem of congestion (overflow router queues)
 network stays busy but very little useful work is being done

 This happened in real life ~1987
 Led to Van Jacobson’s TCP algorithms

• these form the basis of congestion control in the Internet today
 Researchers asked two questions:

• Was TCP misbehaving?
• Could TCP be “trained” to work better under ‘absymal network conditions?’

A Scenario

Receiver window size is 16KB.

Bottleneck router buffer size is
15 KB.

Data bandwidth is about 20KB/s

Slope is bandwidth.

Steep smooth upward
slope == means good
bandwidth.

Downward slope means
retransmissions (bad).

Effects of early retransmission

If only…

 We knew RTT and Current Router Queue Size,
 then we would send:

MIN(Router Queue Size, Effective Window Size)

 and not retransmit a packet until it had been sent
RTT ago.

 But we don’t know these things

 so we have to estimate them

 They change over time because of other data sources
 so we have to continually adapt them

Ideal packet flow: stable equilibrium

Pr = Interpacket spacing --> mirrors that of slowest link

As = Inter-ACK spacing --> mirrors that of slowest downstream link

Modern TCP in previous scenario

Notice:

• no retransmissions,
(and thus no packet loss)

• achieved BW =
bottleneck BW

1988 Observations on Congestion
Collapse

 Implementation, not the protocol, leads to collapse
 choices about when to retransmit, when to “back off” because of losses

 “Obvious” ways of doing things lead to non-obvious and undesirable results
 “send effective-window-size # packets, wait RTT, try again”

 Remedial algorithms achieve network stability by forcing the transport connection to
obey a ‘packet conservation’ principle.
 for connection in equilibrium (stable with full window in transit), packet flow is conservative

• a new packet not put in network until an old packet leaves

Resulting TCP/IP Improvements

 Slow-start
 Round-trip time variance estimation
 Exponential retransmit timer backoff
 More aggressive receiver ack policy
 Dynamic window sizing on congestion
 Clamped retransmit backoff (Karn)
 Fast Retransmit

Packet Conservation
Principle

Congestion control means: “Finding places that violate the
conservation of packets principle and then fixing them.”

Key ideas

 Routers queue packets
 if queue overflows, packet loss occurs
 happens when network is “congested”

 Retransmissions deal with loss
 need to retransmit sensibly

• too early: needless retransmission
• too late: lost bandwidth

 Senders must control their transmission pace
 flow control: send no more than receiver can

handle
 congestion control: send no more than network

can handle

Basic rules of TCP congestion
control

1. The connection must reach equilibrium.
– hurry up and stabilize!
– when things get wobbly, put on the brakes and reconsider

2. Sender must not inject a new packet before an old packet has left
– a packet leaves when the receiver picks it up,
– or if it gets lost.

• damaged in transit or dropped at congested point
• (far fewer than 1% of packets get damaged in practice)

– ACK or packet timeout signals that a packet has “exited.”
– ACK are easy to detect.
– appropriate timeouts are harder…. all about estimating RTT.

3. Equilibrium is lost because of resource contention along the way.
– new competing stream appears, must restabilize

1. The connection must reach equilibrium.

1. Getting to Equilibrium -- Slow
Start

 Goal
 Quickly determine the appropriate window size

• Basically, we’re trying to sense the bottleneck bandwidth

 Strategy
 Introduce congestion_window (cwnd)
 When starting off, set cwnd to 1
 For each ACK received, add 1 to cwnd
 When sending, send the minimum of receiver’s advertised window and

cwnd

 Guaranteed to not transmit at more than twice the max BW, and for no
more than RTT.
 (bw delay product)

Cwnd doubles every RTT;

Opening a window of size

W takes time (RTT)log2W.

Slow Start

 Note that the effect is to double transmission rate every
RTT
 This is ‘slow’?

 Basically an effective way to probe for the bottleneck
bandwidth, using packet losses as the feedback
 No change in protocol/header was required to

implement

 When do you need to do this kind of probing?

2. A sender must not inject a new packet before an old packet has exited.

2. Packet Injection. Estimating
RTTs

 Do not inject a new packet until an old packet has left.
 1. ACK tells us that an old packet has left.
 2. Timeout expiration tells us as well.

• We must estimate RTT properly.

 Strategy 1: pick some constant RTT.
 simple, but probably wrong. (certainly not adaptive)

 Strategy 2: Estimate based on past behavior.

Tactic 0: Mean
Tactic 1: Mean with something??

Original TCP (RFC793)
retransmission timeout algorithm

 Use EWMA to estimate RTT:

EstimatedRTT = (1-g)(EstimatedRTT) +
g(SampleRTT)

0 ≤ g ≤ 1, usually g = .1 or .2

 Conservatively set timeout to small multiple (2x) of the estimate

Retransmission Timeout = 2 x EstimatedRTT

Jacobson/Karels Algorithm

1. DevRTT = (1-b) * DevRTT + b * |SampledRTT - EstimatedRTT|
• typically, b = .25

2. Retransmission timeout = EstimatedRTT + k * DevRTT
 k is generally set to 4

 timeout =~ EstimatedRTT when variance is low (estimate is
good)

3. Equilibrium is lost because of resource contention along the way.

Source
2

100-Mbps FDDI

Congestion from Multiple Sources

Destination
1.5-Mbps T1 link

Router

Source
1 10-Mbps Ethernet

Packets queued here

Packets Lost Here

In Real Life

Four Simultaneous Streams

TCP is “Self-Clocking”

 ACKs pace transmissions at approximately the botteneck
rate
 So just by sending packets we can discern the “right”

sending rate (called the packet-pair technique)

Sink
45 Mbps T3 linkRouter

Source
100 Mbps Ethernet

Congestion Control Relies on
Signals from the Network

 The network is not saturated: Send even more
 The network is saturated: Send less

 ACK signals that the network is not saturated.
 A lost packet (no ACK) signals that the network is saturated
 Leads to a simple strategy:

 On each ack, increase congestion window (additive increase)
 On each lost packet, decrease congestion window (multiplicative decrease)

 Why increase slowly and decrease quickly?
 Respond to good news conservatively, but bad news aggressively

AIMD (Additive Increase/Multiplicative
Decrease)

 How to adjust probe rate?

 Increase slowly while we
believe there is bandwidth
 Additive increase per RTT
 Cwnd += 1 packet / RTT

 Decrease quickly when there
is loss (went too far!)
 Multiplicative decrease
 Cwnd /= 2

Source Destination

…

With Additive
Increase/Multiplicative Decrease

TCP Sawtooth Pattern

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

C
w

nd
 (K

B
)

T ime (seconds)

70

30
40
50

10

10.0

Comparing to “Slow Start”

 Q: What is the ideal value of cwnd? How
long will AIMD take to get there?

 Use a different strategy to get close to
ideal value
 Slow start:

• Double cwnd every RTT
– cwnd *= 2 per RTT
– i.e., cwnd += 1 per ACK

 AIMD:
• add one to cwnd per RTT

– cwnd +=1 per RTT
– i.e., cwnd += (1/cwnd) per ACK

Source Destination

…

Combining Slow Start and AIMD

 Slow start is used whenever the connection is not running with packets
outstanding
 initially, and after timeouts indicating that there’s no data on the wire

 But we don’t want to overshoot our ideal cwnd on next slow start, so
remember the last cwnd that worked with no loss
 ssthresh = cwnd after cwnd /= 2 on loss
 switch to AIMD once cwnd passes ssthresh

ssthresh

Example (Slow Start +AIMD)

Time (seconds)

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

K
B

70

30
40
50

10

Timeout Timeout Timeout

Packets that will be lostSlowstart
AIMD

The Long Timeout Problem

 Would like to “signal” a lost packet earlier than timeout
 enable retransmit sooner

 Can we infer that a packet has been lost?
 Receiver receives an “out of order packet”
 Good indicator that the one(s) before have been

misplaced
 Receiver generates a duplicate ack on receipt of a

misordered packet
 Sender interprets sequence of duplicate acks as a signal

that the as-yet-unacked packet has not arrived

Fast Retransmit

 TCP uses cumulative
acks, so duplicate acks
start arriving after a
packet is lost.

 We can use this fact to
infer which packet was
lost, instead of waiting
for a timeout.

 3 duplicate acks are used
in practice

Packet 1

Packet 2
Packet 3
Packet 4

Packet 5

Packet 6

Retransmit
packet 3

ACK 1

ACK 2

ACK 2

ACK 2

ACK 6

ACK 2

Sender Receiver

Example (with Fast Retransmit)

Time (seconds)

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0

K
B

70

30
40
50

10

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

K
B

70

30
40
50

10

Timeout Timeout Timeout

FT

NO FT

Fast Recovery

 After Fast Retransmit, use further duplicate acks to grow
cwnd and clock out new packets, since these acks
represent packets that have left the network.

 End result: Can achieve AIMD when there are single
packet losses. Only slow start the first time and on a real
timeout.

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0

K
B

70

30
40
50

10

Key Concepts

 Packet conservation is a fundamental concept in TCP’s
congestion management
 Get to equilibrium

• Slow Start

 Do nothing to get out of equilibrium
• Good RTT Estimate

 Adapt when equilibrium has been lost due to other’s
attempts to get to/stay in equilibrium

• Additive Increase/Multiplicative Decrease

 The network reveals its own behavior

Repeating Slow Start After Idle Period

 Suppose a TCP connection goes idle for a while
 E.g., Telnet session where you don’t type for an hour

 Eventually, the network conditions change
 Maybe many more flows are traversing the link
 E.g., maybe everybody has come back from lunch!

 Dangerous to start transmitting at the old rate
 Previously-idle TCP sender might blast the network
 … causing excessive congestion and packet loss

 So, some TCP implementations repeat slow start
 Slow-start restart after an idle period

TCP Achieves Some Notion of Fairness

 Effective utilization is not the only goal
 We also want to be fair to the various flows
 … but what the heck does that mean?

 Simple definition: equal shares of the bandwidth
 N flows that each get 1/N of the bandwidth?
 But, what if the flows traverse different paths?
 E.g., bandwidth shared in proportion to the RTT

What About Cheating?

 Some folks are more fair than others
 Running multiple TCP connections in parallel
 Modifying the TCP implementation in the OS
 Use the User Datagram Protocol

 What is the impact
 Good guys slow down to make room for you
 You get an unfair share of the bandwidth

 Possible solutions?
 Routers detect cheating and drop excess packets?
 Peer pressure?
 ???

Queuing Mechanisms

Random Early Detection (RED)
Explicit Congestion Notification (ECN)

Bursty Loss From Drop-Tail Queuing

 TCP depends on packet loss
 Packet loss is the indication of congestion
 In fact, TCP drives the network into packet loss
 … by continuing to increase the sending rate

 Drop-tail queuing leads to bursty loss
 When a link becomes congested…
 … many arriving packets encounter a full queue
 And, as a result, many flows divide sending rate in half
 … and, many individual flows lose multiple packets

Slow Feedback from Drop Tail

 Feedback comes when buffer is completely full
 … even though the buffer has been filling for a while

 Plus, the filling buffer is increasing RTT
 … and the variance in the RTT

 Might be better to give early feedback
 Get one or two connections to slow down, not all of them
 Get these connections to slow down before it is too late

Random Early Detection (RED)

 Basic idea of RED
 Router notices that the queue is getting backlogged
 … and randomly drops packets to signal congestion

 Packet drop probability
 Drop probability increases as queue length increases
 If buffer is below some level, don’t drop anything
 … otherwise, set drop probability as function of queue

Average Queue Length

Pr
ob

ab
ili

ty

Properties of RED

 Drops packets before queue is full
 In the hope of reducing the rates of some flows

 Drops packet in proportion to each flow’s rate
 High-rate flows have more packets
 … and, hence, a higher chance of being selected

 Drops are spaced out in time
 Which should help desynchronize the TCP senders

 Tolerant of burstiness in the traffic
 By basing the decisions on average queue length

Problems With RED

 Hard to get the tunable parameters just right
 How early to start dropping packets?
 What slope for the increase in drop probability?
 What time scale for averaging the queue length?

 Sometimes RED helps but sometimes not
 If the parameters aren’t set right, RED doesn’t help
 And it is hard to know how to set the parameters

 RED is implemented in practice
 But, often not used due to the challenges of tuning

right
 Many variations in the research community

 With cute names like “Blue” and “FRED”… 

Explicit Congestion Notification

 Early dropping of packets
 Good: gives early feedback
 Bad: has to drop the packet to give the feedback

 Explicit Congestion Notification
 Router marks the packet with an ECN bit
 … and sending host interprets as a sign of congestion

 Surmounting the challenges
 Must be supported by the end hosts and the routers
 Requires two bits in the IP header (one for the ECN

mark, and one to indicate the ECN capability)
 Solution: borrow two of the Type-Of-Service bits in

the IPv4 packet header

Other TCP Mechanisms

Nagle’s Algorithm and Delayed ACK

Motivation for Nagle’s Algorithm

 Interactive applications
 Telnet and rlogin
 Generate many small packets (e.g., keystrokes)

 Small packets are wasteful
 Mostly header (e.g., 40 bytes of header, 1 of data)

 Appealing to reduce the number of packets
 Could force every packet to have some minimum size
 … but, what if the person doesn’t type more

characters?
 Need to balance competing trade-offs

 Send larger packets
 … but don’t introduce much delay by waiting

Nagle’s Algorithm

 Wait if the amount of data is small
 Smaller than Maximum Segment Size (MSS)

 And some other packet is already in flight
 I.e., still awaiting the ACKs for previous packets

 That is, send at most one small packet per RTT
 … by waiting until all outstanding ACKs have arrived

 Influence on performance
 Interactive applications: enables batching of bytes
 Bulk transfer: transmits in MSS-sized packets anyway

vs.

ACK

Motivation for Delayed ACK

 TCP traffic is often bidirectional
 Data traveling in both directions
 ACKs traveling in both directions

 ACK packets have high overhead
 40 bytes for the IP header and TCP header
 … and zero data traffic

 Piggybacking is appealing
 Host B can send an ACK to host A
 … as part of a data packet from B to A

