
CSE 461: Transport Layer Connections

Naming Processes/Services

 Process here is an abstract term for your Web browser (HTTP),
Email servers (SMTP), hostname translation (DNS), RealAudio player
(RTSP), etc.

 How do we identify for remote communication?
 Process id or memory address are OS-specific and transient

 So TCP and UDP use Ports
 16-bit integers representing mailboxes that processes “rent”

• typically from OS

 Identify endpoint uniquely as (IP address, protocol, port)
• OS converts into process-specific channel, like “socket”

Processes as Endpoints

Picking Port Numbers

 We still have the problem of allocating port numbers
 What port should a Web server use on host X?
 To what port should you send to contact that Web server?

 Servers typically bind to “well-known” port numbers
 e.g., HTTP 80, SMTP 25, DNS 53, … look in /etc/services
 Ports below 1024 reserved for “well-known” services

 Clients use OS-assigned temporary (ephemeral) ports
 Above 1024, recycled by OS when client finished

SrcPort DstPort

Checksum Length

Data

0 16 31

User Datagram Protocol (UDP)

 Provides message delivery between processes
 Source port filled in by OS as message is sent
 Destination port identifies UDP delivery queue at

endpoint

Application
process

Application
process

Application
process

Packets arrive

Ports

Message
Queues

DeMux on
Port #

UDP Delivery

Kernel
boundary

UDP Checksum

 UDP includes optional protection against errors
 Checksum intended as an end-to-end check on

delivery
 So it covers data, UDP header

SrcPort DstPort

Checksum Length

Data

0 16 31

Transmission Control Protocol (TCP)

 Reliable bi-directional bytestream between processes
 Message boundaries are not preserved

 Connections
 Conversation between endpoints with beginning and end

 Flow control
 Prevents sender from over-running receiver buffers

 Congestion control
 Prevents sender from over-running network buffers

Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

0 4 10 16 31

TCP Header Format

 Ports plus IP addresses identify a connection

Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

0 4 10 16 31

TCP Header Format

 Sequence, Ack numbers used for the sliding window

Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

0 4 10 16 31

TCP Header Format

 Flags may be URG, ACK, PUSH, RST, SYN, FIN

Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

0 4 10 16 31

TCP Header Format

 Advertised window is used for flow control

TCP Connection Establishment

 Both connecting and closing are (slightly) more complicated than
you might expect

 That they can work is reasonably straightforward

 Harder is what to do when things go wrong
 TCP SYN+ACK attack

 Close looks a bit complicated because both sides have to close to be
done
 Conceptually, there are two one-way connections
 Don’t want to hang around forever if other end crashes

Three-Way Handshake

 Opens both directions for transfer

Active opener
(client)

Passive listener
(server)

SYN, SequenceNum = x

SYN + ACK, SequenceNum = y,

ACK, Acknowledgment = y + 1

Acknowledgment = x + 1

+data

Some Comments

 We could abbreviate this setup, but it was chosen to be
robust, especially against delayed duplicates
 Three-way handshake from Tomlinson 1975

 Choice of changing initial sequence numbers (ISNs)
minimizes the chance of hosts that crash getting
confused by a previous incarnation of a connection

 But with random ISN it actually proves that two hosts
can communicate
 Weak form of authentication

CLOSED

LISTEN

SYN_RCVD SYN_SENT

ESTABLISHED

CLOSE_WAIT

LAST_ACKCLOSING

TIME_WAIT

FIN_WAIT_2

FIN_WAIT_1

Passive open Close

Send/ SYN
SYN/SYN + ACK

SYN + ACK/ACK

SYN/SYN + ACK

ACK

Close /FIN

FIN/ACKClose /FIN

FIN/ACKACK + FIN/ACK Timeout after two
segment lifetimesFIN/ACK

ACK

ACK

ACK

Close /FIN

Close

CLOSED

Active open/SYN

TCP State Transitions

Again, with States

Active participant
(client)

Passive participant
(server)

SYN, SequenceNum = x

SYN + ACK, SequenceNum = y,

ACK, Acknowledgment = y + 1

Acknowledgment = x + 1

+data

LISTEN

SYN_RCVD

SYN_SENT

ESTABLISHED

ESTABLISHED

Connection Teardown

 Orderly release by sender and receiver when done
 Delivers all pending data and “hangs up”

 Cleans up state in sender and receiver

 TCP provides a “symmetric” close
 both sides shutdown independently

TCP Connection Teardown

Web server Web browser

FIN

ACK

ACK

FIN

FIN_WAIT_1

CLOSE_WAIT

LAST_ACK
FIN_WAIT_2
TIME_WAIT

CLOSEDCLOSED
…

The TIME_WAIT State

 We wait 2MSL (two times the maximum segment lifetime
of 60 seconds) before completing the close

 Why?

 ACK might have been lost and so FIN will be resent
 Could interfere with a subsequent connection

Berkeley Sockets interface

 Networking protocols implemented in OS
 OS must expose a programming API to applications
 most OSs use the “socket” interface
 originally provided by BSD 4.1c in ~1982.

 Principle abstraction is a “socket”
 a point at which an application attaches to the

network
 defines operations for creating connections, attaching

to network, sending and receiving data, closing
connections

TCP (connection-oriented)

Server

Socket()

Bind()
Client

Socket()
Listen()

Accept()

Recv()

Send()

Connect()

Send()

Recv()

Block until
connect

Process
request

Connection Establishmt.

Data (request)

Data (reply)

UDP (connectionless)

Server

Socket()

Bind()
Client

Socket()
Recvfrom()

Sendto()

Bind()

Sendto()

Recvfrom()

Block until
Data from
client

Process
request

Data (request)

Data (reply)

Key Concepts

 We use ports to name processes in TCP/UDP
 “Well-known” ports are used for popular services

 Connection setup and teardown complicated by the
effects of the network on messages
 TCP uses a three-way handshake to set up a

connection
 TCP uses a symmetric disconnect

