
CSE 461: Transport Layer Connections

Naming Processes/Services

 Process here is an abstract term for your Web browser (HTTP),
Email servers (SMTP), hostname translation (DNS), RealAudio player
(RTSP), etc.

 How do we identify for remote communication?
 Process id or memory address are OS-specific and transient

 So TCP and UDP use Ports
 16-bit integers representing mailboxes that processes “rent”

• typically from OS

 Identify endpoint uniquely as (IP address, protocol, port)
• OS converts into process-specific channel, like “socket”

Processes as Endpoints

Picking Port Numbers

 We still have the problem of allocating port numbers
 What port should a Web server use on host X?
 To what port should you send to contact that Web server?

 Servers typically bind to “well-known” port numbers
 e.g., HTTP 80, SMTP 25, DNS 53, … look in /etc/services
 Ports below 1024 reserved for “well-known” services

 Clients use OS-assigned temporary (ephemeral) ports
 Above 1024, recycled by OS when client finished

SrcPort DstPort

Checksum Length

Data

0 16 31

User Datagram Protocol (UDP)

 Provides message delivery between processes
 Source port filled in by OS as message is sent
 Destination port identifies UDP delivery queue at

endpoint

Application
process

Application
process

Application
process

Packets arrive

Ports

Message
Queues

DeMux on
Port #

UDP Delivery

Kernel
boundary

UDP Checksum

 UDP includes optional protection against errors
 Checksum intended as an end-to-end check on

delivery
 So it covers data, UDP header

SrcPort DstPort

Checksum Length

Data

0 16 31

Transmission Control Protocol (TCP)

 Reliable bi-directional bytestream between processes
 Message boundaries are not preserved

 Connections
 Conversation between endpoints with beginning and end

 Flow control
 Prevents sender from over-running receiver buffers

 Congestion control
 Prevents sender from over-running network buffers

Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

0 4 10 16 31

TCP Header Format

 Ports plus IP addresses identify a connection

Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

0 4 10 16 31

TCP Header Format

 Sequence, Ack numbers used for the sliding window

Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

0 4 10 16 31

TCP Header Format

 Flags may be URG, ACK, PUSH, RST, SYN, FIN

Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

0 4 10 16 31

TCP Header Format

 Advertised window is used for flow control

TCP Connection Establishment

 Both connecting and closing are (slightly) more complicated than
you might expect

 That they can work is reasonably straightforward

 Harder is what to do when things go wrong
 TCP SYN+ACK attack

 Close looks a bit complicated because both sides have to close to be
done
 Conceptually, there are two one-way connections
 Don’t want to hang around forever if other end crashes

Three-Way Handshake

 Opens both directions for transfer

Active opener
(client)

Passive listener
(server)

SYN, SequenceNum = x

SYN + ACK, SequenceNum = y,

ACK, Acknowledgment = y + 1

Acknowledgment = x + 1

+data

Some Comments

 We could abbreviate this setup, but it was chosen to be
robust, especially against delayed duplicates
 Three-way handshake from Tomlinson 1975

 Choice of changing initial sequence numbers (ISNs)
minimizes the chance of hosts that crash getting
confused by a previous incarnation of a connection

 But with random ISN it actually proves that two hosts
can communicate
 Weak form of authentication

CLOSED

LISTEN

SYN_RCVD SYN_SENT

ESTABLISHED

CLOSE_WAIT

LAST_ACKCLOSING

TIME_WAIT

FIN_WAIT_2

FIN_WAIT_1

Passive open Close

Send/ SYN
SYN/SYN + ACK

SYN + ACK/ACK

SYN/SYN + ACK

ACK

Close /FIN

FIN/ACKClose /FIN

FIN/ACKACK + FIN/ACK Timeout after two
segment lifetimesFIN/ACK

ACK

ACK

ACK

Close /FIN

Close

CLOSED

Active open/SYN

TCP State Transitions

Again, with States

Active participant
(client)

Passive participant
(server)

SYN, SequenceNum = x

SYN + ACK, SequenceNum = y,

ACK, Acknowledgment = y + 1

Acknowledgment = x + 1

+data

LISTEN

SYN_RCVD

SYN_SENT

ESTABLISHED

ESTABLISHED

Connection Teardown

 Orderly release by sender and receiver when done
 Delivers all pending data and “hangs up”

 Cleans up state in sender and receiver

 TCP provides a “symmetric” close
 both sides shutdown independently

TCP Connection Teardown

Web server Web browser

FIN

ACK

ACK

FIN

FIN_WAIT_1

CLOSE_WAIT

LAST_ACK
FIN_WAIT_2
TIME_WAIT

CLOSEDCLOSED
…

The TIME_WAIT State

 We wait 2MSL (two times the maximum segment lifetime
of 60 seconds) before completing the close

 Why?

 ACK might have been lost and so FIN will be resent
 Could interfere with a subsequent connection

Berkeley Sockets interface

 Networking protocols implemented in OS
 OS must expose a programming API to applications
 most OSs use the “socket” interface
 originally provided by BSD 4.1c in ~1982.

 Principle abstraction is a “socket”
 a point at which an application attaches to the

network
 defines operations for creating connections, attaching

to network, sending and receiving data, closing
connections

TCP (connection-oriented)

Server

Socket()

Bind()
Client

Socket()
Listen()

Accept()

Recv()

Send()

Connect()

Send()

Recv()

Block until
connect

Process
request

Connection Establishmt.

Data (request)

Data (reply)

UDP (connectionless)

Server

Socket()

Bind()
Client

Socket()
Recvfrom()

Sendto()

Bind()

Sendto()

Recvfrom()

Block until
Data from
client

Process
request

Data (request)

Data (reply)

Key Concepts

 We use ports to name processes in TCP/UDP
 “Well-known” ports are used for popular services

 Connection setup and teardown complicated by the
effects of the network on messages
 TCP uses a three-way handshake to set up a

connection
 TCP uses a symmetric disconnect

