
CSE 461: Transport Layer Connections

Naming Processes/Services

 Process here is an abstract term for your Web browser (HTTP),
Email servers (SMTP), hostname translation (DNS), RealAudio player
(RTSP), etc.

 How do we identify for remote communication?
 Process id or memory address are OS-specific and transient

 So TCP and UDP use Ports
 16-bit integers representing mailboxes that processes “rent”

• typically from OS

 Identify endpoint uniquely as (IP address, protocol, port)
• OS converts into process-specific channel, like “socket”



Processes as Endpoints

Picking Port Numbers

 We still have the problem of allocating port numbers
 What port should a Web server use on host X?
 To what port should you send to contact that Web server?

 Servers typically bind to “well-known” port numbers
 e.g., HTTP 80, SMTP 25, DNS 53, … look in /etc/services
 Ports below 1024 reserved for “well-known” services

 Clients use OS-assigned temporary (ephemeral) ports
 Above 1024, recycled by OS when client finished
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User Datagram Protocol (UDP)

 Provides message delivery between processes
 Source port filled in by OS as message is sent
 Destination port identifies UDP delivery queue at

endpoint
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UDP Checksum

 UDP includes optional protection against errors
 Checksum intended as an end-to-end check on

delivery
 So it covers data, UDP header
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Transmission Control Protocol (TCP)

 Reliable bi-directional bytestream between processes
 Message boundaries are not preserved

 Connections
 Conversation between endpoints with beginning and end

 Flow control
 Prevents sender from over-running receiver buffers

 Congestion control
 Prevents sender from over-running network buffers
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TCP Header Format

 Ports plus IP addresses identify a connection
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TCP Header Format

 Sequence, Ack numbers used for the sliding window
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TCP Header Format

 Flags may be URG, ACK, PUSH, RST, SYN, FIN
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TCP Header Format

 Advertised window is used for flow control



TCP Connection Establishment

 Both connecting and closing are (slightly) more complicated than
you might expect

 That they can work is reasonably straightforward

 Harder is what to do when things go wrong
 TCP SYN+ACK attack

 Close looks a bit complicated because both sides have to close to be
done
 Conceptually, there are two one-way connections
 Don’t want  to hang around forever if other end crashes

Three-Way Handshake

 Opens both directions for transfer

Active opener
(client)

Passive listener
(server)

SYN, SequenceNum = x

SYN + ACK, SequenceNum = y,

ACK, Acknowledgment = y + 1

Acknowledgment = x + 1

+data



Some Comments

 We could abbreviate this setup, but it was chosen to be
robust, especially against delayed duplicates
 Three-way handshake from Tomlinson 1975

 Choice of changing initial sequence numbers (ISNs)
minimizes the chance of hosts that crash getting
confused by a previous incarnation of a connection

 But with random ISN it actually proves that two hosts
can communicate
 Weak form of authentication
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Again, with States
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Connection Teardown

 Orderly release by sender and receiver when done
 Delivers all pending data and “hangs up”

 Cleans up state in sender and receiver

 TCP provides a “symmetric” close
 both sides shutdown independently



TCP Connection Teardown
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The TIME_WAIT State

 We wait 2MSL (two times the maximum segment lifetime
of 60 seconds) before completing the close

 Why?

 ACK might have been lost and so FIN will be resent
 Could interfere with a subsequent connection



Berkeley Sockets interface

 Networking protocols implemented in OS
 OS must expose a programming API to applications
 most OSs use the “socket” interface
 originally provided by BSD 4.1c  in ~1982.

 Principle abstraction is a “socket”
 a point at which an application attaches to the

network
 defines operations for creating connections, attaching

to network, sending and receiving data, closing
connections
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UDP (connectionless)
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Key Concepts

 We use ports to name processes in TCP/UDP
 “Well-known” ports are used for popular services

 Connection setup and teardown complicated by the
effects of the network on messages
 TCP uses a three-way handshake to set up a

connection
 TCP uses a symmetric disconnect


