CSE 461: Multiple Access

Homework: Chapter 2, problems 1, 8, 12, 18, 23, 24, 35, 43, 46, and 58

Next Topic

- Key Focus: How do multiple parties share a wire?
- This is the Medium Access Control (MAC) portion of the Link Layer
- Examples of access protocols:
 - Aloha
 - CSMA variants
 - Classic Ethernet
 - Wireless

Application Presentation Session Transport Network Data Link Physical

What is it all about?

- Consider an audio conference where
 - if one person speaks, all can hear
 - if more than one person speaks at the same time, both voices are garbled
- How should participants coordinate actions so that
 - the number of messages exchanged per second is maximized
 - time spent waiting for a chance to speak is minimized
- This is the *multiple access problem*

Some simple solutions

- Use a moderator
 - a speaker must wait for moderator to call on him or her, even if no one else wants to speak
 - what if the moderator's connection breaks?
- Distributed solution
 - speak if no one else is speaking
 - but if two speakers are waiting for a third to finish, guarantee collision
- Designing good schemes is surprisingly hard!

Multiple Access Protocols

- Single shared broadcast channel
- Two or more simultaneous transmissions by nodes: interference
 - Collision if node receives two or more signals at the same time

Multiple Access Protocol

- Distributed algorithm that determines how nodes share channel, i.e., determine when node can transmit
- Communication about channel sharing must use channel itself!
 - No out-of-band channel for coordination

Computer Network Characteristics

- Transmission needs vary
 - Between different nodes
 - Over time
- Network is not fully utilized

Ideal Multiple Access Protocol

Broadcast channel of rate R bps

- 1. When one node wants to transmit, it can send at rate R.
- 2. When M nodes want to transmit, each can send at average rate R/M
- 3. Fully decentralized:
 - no special node to coordinate transmissions
 - no synchronization of clocks, slots
- 4. Simple

Base technologies

- Isolates data from different sources
- Three basic choices
 - Frequency division multiple access (FDMA)
 - Time division multiple access (TDMA)
 - Code division multiple access (CDMA)

FDMA

- Simplest
- Best suited for analog links
- Each station has its own frequency band, separated by guard bands
- Receivers tune to the right frequency
- Number of frequencies is limited
 - reduce transmitter power; reuse frequencies in non-adjacent cells
 - example: voice channel = 30 KHz
 - 833 channels in 25 MHz band
 - with hexagonal cells, partition into 118 channels each
 - but with N cells in a city, can get 118N calls => win if N > 7

TDMA

- All stations transmit data on same frequency, but at different times
- Needs time synchronization
- Pros
 - users can be given different amounts of bandwidth
 - mobiles can use idle times to determine best base station
 - can switch off power when not transmitting
- Cons
 - synchronization overhead
 - greater problems with multipath interference on wireless links

CDMA

- Users separated both by time and frequency
- Send at a different frequency at each time slot (*frequency hopping*)
- Or, convert a single bit to a code (*direct sequence*)
 - receiver can decipher bit by inverse process
- Pros
 - hard to spy
 - immune from narrowband noise
 - no need for all stations to synchronize

CDMA

- Cons
 - implementation complexity
 - need for power control
 - to avoid capture
 - need for a large contiguous frequency band (for direct sequence)

FDD and TDD

- Two ways of converting a wireless medium to a duplex channel
- In Frequency Division Duplex, uplink and downlink use different frequencies
- In Time Division Duplex, uplink and downlink use different time slots
- Can combine with FDMA/TDMA
- Examples
 - TDD/FDMA in second-generation cordless phones
 - FDD/TDMA/FDMA in digital cellular phones

Centralized access schemes

- One station is master, and the other are slaves
 - slave can transmit only when master allows
- Natural fit in some situations
 - wireless LAN, where base station is the only station that can see everyone
 - cellular telephony, where base station is the only one capable of high transmit power

Centralized access schemes

- Pros
 - simple
 - master provides single point of coordination
- Cons
 - master is a single point of failure
 - need a re-election protocol
 - master is involved in every single transfer => added delay

Polling and reservations

- Polling
 - master asks each station in turn if it wants to send (roll-call polling)
 - inefficient if only a few stations are active, overhead for polling messages is high, or system has many terminals
- Reservation
 - Some time slots devoted to reservation messages
 - can be smaller than data slots => *minislots*
 - Stations contend for a minislot (or own one)
 - Master decides winners and grants them access to link

Distributed schemes

- Compared to a centralized scheme
 - more reliable
 - have lower message delays
 - often allow higher network utilization
 - but are more complicated

Random Access Protocols

- When node has packet to send
 - transmit at full channel data rate R.
 - no *a priori* coordination among nodes
- two or more transmitting nodes → "collision"
- random access MAC protocol specifies:
 - how to detect collisions
 - how to recover from collisions (e.g., via delayed retransmissions)
- Examples of random access MAC protocols:
 - slotted ALOHA
 - ALOHA
 - CSMA, CSMA/CD, CSMA/CA

ALOHA

- Wireless links between the Hawaiian islands in the 70s
- Want distributed allocation
 - no special channels, or single point of failure
- Aloha protocol:
 - Just send when you have data!
 - There will be some collisions of course ...
 - Detect error frames and retransmit a random time later

Slotted ALOHA

Assumptions

- all frames same size
- time is divided into equal size slots, time to transmit 1 frame
- nodes start to transmit frames only at beginning of slots
- nodes are synchronized
- if 2 or more nodes transmit in slot, all nodes detect collision

Operation

- when node obtains fresh frame, it transmits in next slot
- no collision, node can send new frame in next slot
- if collision, node retransmits frame in each subsequent slot with prob. p until success

Slotted ALOHA

<u>Pros</u>

- single active node can continuously transmit at full rate of channel
- highly decentralized: only slots in nodes need to be in sync
- simple

<u>Cons</u>

- collisions, wasting slots
- idle slots
- nodes may be able to detect collision in less than time to transmit packet
- clock synchronization

Slotted Aloha efficiency

- Efficiency is the long-run fraction of successful slots when there are many nodes, each with many frames to send
- Suppose N nodes with many frames to send, each transmits in slot with probability p
- prob that node 1 has success in a slot = $p(1-p)^{N-1}$
- prob that any node has a success = Np(1-p)^{N-1}

Optimal choice of p

- For max efficiency with N nodes, find p* that maximizes Np(1-p)^{N-1}
- For many nodes, take limit of Np*(1-p*)^{N-1} as N goes to infinity, gives 1/e = .37
- Efficiency is 37%, even with optimal p

Pure (unslotted) ALOHA

- unslotted Aloha: simpler, no synchronization
- when frame first arrives
 - transmit immediately
- collision probability increases:
 - frame sent at t₀ collides with other frames sent in

Pure Aloha efficiency

$$\begin{split} \mathsf{P}(\text{success by given node}) &= \mathsf{P}(\text{node transmits}) \\ &\quad \mathsf{P}(\text{no other node transmits in } [t_0 - 1, t_0] \\ &\quad \mathsf{P}(\text{no other node transmits in } [t_0, t_0 + 1] \\ &\quad = p \cdot (1 - p)^{\mathsf{N-1}} \cdot (1 - p)^{\mathsf{N-1}} \\ &\quad = p \cdot (1 - p)^{2(\mathsf{N-1})} \end{split}$$

... choosing optimum p and then letting n -> ∞ ...

Efficiency = 1/(2e) = .18Even worse!

Carrier Sense Multiple Access (CSMA)

- A fundamental advance: listen before you transmit
 - check whether the medium is active before sending a packet (i.e *carrier sensing*)
 - If channel sensed is idle, transmit entire frame
 - If channel is busy, defer transmission
 - A node with something to send doesn't have to wait for a master, or for its turn in a schedule
- Human analogy: don't interrupt others!

CSMA collisions

collisions *can* still occur: propagation delay means two nodes may not hear each other's transmission

collision:

entire packet transmission time wasted

note:

role of distance & propagation delay in determining collision probability

2. Carrier Sense Multiple Access

Good defense against collisions only if "a" is small (LANs)

- "a" parameter: number of packets that fit on the wire
 - a = bandwidth * delay / packet size
 - Small (<<1) for LANs, large (>>1) for satellites

Simplest CSMA scheme

- Send a packet as soon as medium becomes idle
- 1-persistent CSMA
 - Wait until idle then go for it
 - Problem: Blocked senders can queue up and collide

Avoiding Collisions: p-persistent CSMA

- p-persistent CSMA
 - If idle send with prob p until done; assumed slotted time
 - Choose p so p * # senders < 1; avoids collisions at cost of delay

Avoiding Collisions: Exponential Backoff

- exponential backoff
 - on collision, choose timeout randomly from doubled range
 - backoff range adapts to number of contending stations
 - no need to choose p
 - need to detect collisions: collision detect circuit => CSMA/CD

CSMA/CD (Collision Detection)

CSMA/CD: carrier sensing, deferral as in CSMA

- collisions *detected* within short time
- colliding transmissions aborted, reducing channel wastage
- collision detection:
 - easy in wired LANs: measure signal strengths, compare transmitted, received signals
 - difficult in wireless LANs: receiver shut off while transmitting
- human analogy: the polite conversationalist

CSMA/CD collision detection

Ethernet (IEEE 802.3)

dominant wired LAN technology:

- cheap <\$20 for Gigabit!</p>
- first widely used LAN technology
- Simpler, cheaper than token LANs and ATM
- Kept up with speed race: 10 Mbps 10 Gbps

Metcalfe's Ethernet sketch

Ethernet Topologies

Bus Topology: Shared All nodes connected to a wire

Star Topology:

All nodes connected to a central repeater (hub or switch)

Ethernet Connectivity

Ethernet Connectivity

Ethernet Connectivity

Ethernet II Frame Structure

Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

Preamble (8)	Dest (6)	Source (6)	Type (2)	Payload (var)	Pad (var)	CRC (4)
--------------	----------	------------	----------	---------------	-----------	---------

Preamble:

- 7 bytes with pattern 10101010 followed by one byte with pattern 10101011
- Used to synchronize receiver, sender clock rates (Manchester encoding)

Ethernet Frame Structure (more)

- Addresses: 6 bytes
 - if adapter receives frame with matching destination address, or with broadcast address (e.g. ARP packet), it passes data in frame to net-layer protocol
 - otherwise, adapter discards frame
- Type: higher layer protocol (usually IP, but Novell IPX, Apple Talk, and others supported)
- Data: min 64 bytes (why?), max 1500 bytes
- CRC: checked at receiver, if error is detected, the frame is simply dropped

Preamble (8) Dest (6) Source (6)	Type (2)	Payload (var)	Pad (var) CRC (4)
---------------------	---------------	----------	---------------	-------------------

Ethernet Specifications

- Coaxial Cable
 - Max between stations 500m
 - Max length 2.5km with repeaters
- Taps
 - > 2.5m apart
- Transceiver
 - Idle detection
 - Sends/Receives signal
- Repeater
 - Joins multiple Ethernet segments
 - < 5 repeaters between any two hosts
- < 1024 hosts</p>

Ethernet MAC Algorithm

- Sender/Transmitter
 - If line is idle (carrier sensed)
 - Send immediately
 - Send maximum of 1500B data (1527B total)
 - Wait 9.6 μ s before sending again
 - If line is busy (no carrier sensed)
 - Wait until line becomes idle
 - Send immediately
 - If collision detected
 - Stop sending and jam signal
 - Try again later

Ethernet MAC Algorithm

Node A starts transmission at time 0 Node B starts transmission at time T

How can we ensure that A knows about the collision?

Collision Detection

- Example
 - Node A's message reaches node B at time T
 - Node B's message reaches node A at time 2T
 - For node A to detect a collision, node A must still be transmitting at time 2T
- 802.3
 - 2T is bounded to 51.2µs
 - At 10Mbps $51.2\mu s = 512b$ or 64B
 - Packet length \geq 64B
- Jam after collision
 - Ensures that all hosts notice the collision

Ethernet MAC Algorithm

Node A starts transmission at time 0

Node B starts transmission at time T

At time 2T, A is still transmitting and notices a collision

Binary Exponential Backoff

- How long should a host wait to retry after a collision?
- Build on 1-persistent CSMA/CD
- On collision: jam and exponential backoff
- Binary Exponential Backoff:
 - Colliding hosts pick a random number from 0 to 2^(N-1)
 - First collision: wait 0 or 1 slot times at random and retry
 - Second time: wait 0, 1, 2, or 3 frame times
 - Nth time (N<=10): wait 0, 1, ..., 2^N-1 times
 - Max wait 1023 frames, give up after 16 attempts
 - Scheme balances average wait with load

Binary Exponential Backoff

CSMA/CD efficiency

- Much better than ALOHA, but still decentralized, simple, and cheap
- t_{trans} = time to transmit max-size frame
- t_{prop} = max prop between 2 nodes in LAN
- More efficient to send larger frames (Efficiency $\rightarrow 1$ as $t_{trans} \rightarrow \infty$)
 - Acquire the medium and send lots of data
 - Worse for Fast, Gigabit Ethernet where t_{trans} is short
- Smaller networks more efficient (Efficiency $\rightarrow 1$ as $t_{prop} \rightarrow 0$)
 - Worse as path gets longer (e.g., satellite)

Ethernet Capture

- Randomized access scheme is not fair
- Stations A and B always have data to send
 - They will collide at some time
 - Suppose A wins and sends, while B backs off
 - Next time they collide and B's chances of winning are halved!

Frame Reception

- Sender handles all access control
- Receiver simply pulls the frame from the network
- Ethernet controller/card
 - Sees all frames
 - Selectively passes frames to host processor
- Acceptable frames
 - Addressed to host
 - Addressed to broadcast
 - Addressed to multicast address to which host belongs
 - Anything (if in promiscuous mode)
 - Need this for packet sniffers/TCPDump

Contention-free Protocols

- Collisions are the main difficulty with random schemes
 - Inefficiency, limit to scalability
- Q: Can we avoid collisions?
- A: Yes. By taking turns or with reservations
 - Token Ring / FDDI, DQDB
- More generally, what else might we want?
 - Deterministic service, priorities/QOS, reliability

Token Ring (802.5)

- Token rotates permission to send around node
- Sender injects packet into ring and removes later
 - Maximum token holding time (THT) bounds access time
 - token release after sending data
 - Round robin service, acknowledgments and priorities
- Monitor nodes ensure health of ring

FDDI (Fiber Distributed Data Interface)

- Roughly a large, fast token ring
 - 100 Mbps and 200km vs 4/16 Mbps and local
 - Dual counter-rotating rings for redundancy
 - Supports both single attached and dual attached stations
 - Complex token holding policies for voice etc. traffic
 - Guaranteed rotation every Target Token Rotation Time (TTRT)
- Token ring advantages
 - No contention, bounded access delay
 - Supports fair, reserved, priority access
- Disadvantages
 - Complexity, reliability, scalability

Token passing

- In distributed polling, every station has to wait for its turn
- Time wasted because idle stations are still given a slot
- What if we can quickly skip past idle stations?
- This is the key idea of token ring
- Special packet called 'token' gives station the right to transmit data
- When done, it passes token to `next' station
 - => stations form a logical ring
- No station will starve

Logical rings

Can be on a non-ring physical topology

(c) Token bus

(b) Dual ring

(d) Hub or star-ring

Ring operation

- During normal operation, copy packets from input buffer to output
- If packet is a token, check if packets ready to send
- If not, forward token
- If so, delete token, and send packets
- Receiver copies packet and sets 'ack' flag
- Sender removes packet and deletes it
- When done, reinserts token
- If ring idle and no token for a long time, regenerate token

Hub or star-ring

- Simplifies wiring
- Active hub is predecessor and successor to every station
 - can monitor ring for station and link failures
- Passive hub only serves as wiring concentrator
 - but provides a single test point
- Because of these benefits, hubs are practically the only form of wiring used in real networks
 - even for Ethernet

Evaluating token ring

- Pros
 - medium access protocol is simple and explicit
 - no need for carrier sensing, time synchronization or complex protocols to resolve contention
 - guarantees zero collisions
 - can give some stations priority over others
- Cons
 - token is a single point of failure
 - lost or corrupted token trashes network
 - need to carefully protect and, if necessary, regenerate token
 - all stations must cooperate
 - network must detect and cut off unresponsive stations
 - stations must actively monitor network
 - usually elect one station as monitor

Key Concepts

- Multiple access networks
 - Share medium by dividing up time, frequency, code
 - Are either controlled or fully distributed
- Key concerns: fairness and efficiency
 - Overhead: collisions and uselessly waiting
- Popular standards:
 - Ethernet (random access, CSMA/CD)
 - Token ring (contention-free)