
CSE 461: Framing, Error Detection and
Correction

Next Topics

  Framing
  Focus: How does a receiver know

where a message begins/ends

  Error detection and correction
  Focus: How do we detect and

correct messages that are garbled
during transmission?

  The responsibility for doing this
cuts across the different layers

Physical
Data Link
Network

Transport
Session

Presentation
Application

Framing

  Need to send message, not just bits
  Requires that we synchronize on the start of

message reception at the far end of the link
  Complete Link layer messages are called frames

  Common approaches: Sentinels, lengths, clock-based
  Sentinels: Look for special control code that marks

start of frame and escape or “stuff” this code within
the data region

  Lengths: additionally, tell receiver how large the
frame is going to be

  Clocks: agree on when frames ought to begin/end

Example: Point-to-Point Protocol
(PPP)

  IETF standard, used for dialup and leased lines

  Flag is special and indicates start/end of frame
  Occurrences of flag inside payload must be “stuffed”

  Like an “escape” character:
•  “ \”

  Replace 0x7E with 0x7D, 0x5E
  Replace 0x7D with 0x7D, 0x5D

  Problems?
  Why not use a length field?

(header) (variable) (0x7E) (trailer) (0x7E)

Example: SONET

  Standard for long distance transmission over optical
networks
  Base rate STS-1 of 51.84 Mbps
  STS-192 in use

  All packets are 125 μs long start frame synch bytes
just used for synchronization

  No character stuffing, no need for length field to find
end of frames
  Why not always do things SONET style?

Error Detection and Redundancy

  Noise can flip some of the bits we receive
  We must be able to detect when this occurs!
  Who needs to detect it? (links/routers, OSs, or

apps?)

  Basic approach: add redundant data
  Error detection codes allow errors to be recognized
  Error correction codes allow errors to be repaired too

Motivating Example

  A simple error detection scheme:
  Just send two copies. Differences imply errors.

  Question: Can we do any better?
  With less overhead
  Catch more kinds of errors

  Answer: Yes – stronger protection with fewer bits
  But we can’t catch all inadvertent errors, nor malicious ones

  We will look at basic block codes
  K bits in, N bits out is a (N,K) code
  Simple, memoryless mapping

The Hamming Distance

  Errors must not turn one valid codeword into another valid
codeword, or we cannot detect/correct them.

  Hamming distance of a code is the smallest number of bit
differences that turn any one codeword into another
  e.g, code 000 for 0, 111 for 1, Hamming distance is 3

  For code with distance d+1:
  d errors can be detected, e.g, 001, 010, 110, 101, 011

  For code with distance 2d+1:
  d errors can be corrected, e.g., 001 000

Parity

  Start with n bits and add another so that the total
number of 1s is even (even parity)
  e.g. 0110010 01100101
  Easy to compute as XOR of all input bits

  Will detect an odd number of bit errors
  But not an even number

  Does not correct any errors

2D Parity

  Add parity row/column to array of
bits

  How many simultaneous bit errors
can it detect?

  Which errors can it correct?

0101001 1
1101001 0
1011110 1
0001110 1
0110100 1
1011111 0

1111011 0

Checksums

  Used in Internet protocols (IP, ICMP, TCP, UDP)
  Basic Idea: Add up the data and send it along with sum

  Algorithm:
  checksum is the 1s complement of the 1s

complement sum of the data interpreted 16 bits at a
time (for 16-bit TCP/UDP checksum)

  1s complement: flip all bits to make number negative
  Consequence: adding requires carryout to be added

back

CRCs (Cyclic Redundancy Check)

  Stronger protection than checksums
  Used widely in practice, e.g., Ethernet CRC-32
  Implemented in hardware (XORs and shifts)

  Algorithm: Given n bits of data, generate a k bit check
sequence that gives a combined n + k bits that are
divisible by a chosen divisor C(x)

  Based on mathematics of finite fields
  “numbers” correspond to polynomials, use modulo

arithmetic
  e.g, interpret 10011010 as x7 + x4 + x3 + x1

CRC Example

  Extend message with k
 0’s, when using a k
-degree generator

  Divide message by
 generator (XOR)

  Discard result
  Subtract remainder

 from original message

  On reception, check
 that message is
 divisible by generator

How is C(x) Chosen?

  Mathematical properties:
  All 1-bit errors if non-zero xk and x0 terms
  All 2-bit errors if C(x) has a factor with at least three

terms
  Any odd number of errors if C(x) has (x + 1) as a

factor
  Any burst error < k bits

  There are standardized polynomials of different degree
that are known to catch many errors
  Ethernet CRC-32:

100000100110000010001110110110111

Error Correction

  Two strategies to correct errors:
  Detect and retransmit, or Automatic Repeat reQuest.

(ARQ)
  Error correcting codes, or Forward Error Correction

(FEC)
  Retransmissions typically at higher levels (Network+).

Why?

  Question: Which should we choose?

Retransmissions vs. FEC

  The better option depends on the kind of errors and the
cost of recovery

  Example: Message with 1000 bits, Prob(bit error) 0.001
  Case 1: random errors
  Case 2: bursts of 1000 errors
  Case 3: real-time application (teleconference)

ARQ: Stop-and-Wait

  Idea: transmit and wait for an ACK
  Sender sets a timer
  He retransmits if doesn’t hear

an ACK before the timer expires
  What should the timeout be?
  Do we need sequence numbers?

  Efficiency?
  E.g., 1.5 Mbps link

with 45ms RTT,
1500 byte frame
1500 * 8 / .045 = 267 Kbps

ARQ: Sliding Window

  Idea: have more than one
 outstanding packet

  LFS – LAR ≤SWS, LAF – LFR ≤ RWS
  How big should SWS and RWS be?
  Sequence numbers?
  Flow Control?
  Cumulative ACKS
  Selective ACKs? NACKs?

Last Acknowledged
Received

Last Frame
Sent

Send Window Size Receive Window Size

Last Frame
Received

Largest Acceptable
Frame

FEC: Reed-Solomon / BCH Codes

  Developed to protect data on magnetic disks
  Used for CDs and cable modems too
  Property: 2t redundant bits can correct <= t errors
  Mathematics somewhat more involved …

Key Concepts

  Senders “frame” messages with sentinels, length fields,
and clock synch, so receivers can determine where they
start and end

  Redundant bits are added to messages to protect
against transmission errors.

  Two recovery strategies are retransmissions (ARQ) and
error correcting codes (FEC)

