
CSE 461: Framing, Error Detection and
Correction

Next Topics

  Framing
  Focus: How does a receiver know

where a message begins/ends

  Error detection and correction
  Focus: How do we detect and

correct messages that are garbled
during transmission?

  The responsibility for doing this
cuts across the different layers

Physical
Data Link
Network

Transport
Session

Presentation
Application

Framing

  Need to send message, not just bits
  Requires that we synchronize on the start of

message reception at the far end of the link
  Complete Link layer messages are called frames

  Common approaches: Sentinels, lengths, clock-based
  Sentinels: Look for special control code that marks

start of frame and escape or “stuff” this code within
the data region

  Lengths: additionally, tell receiver how large the
frame is going to be

  Clocks: agree on when frames ought to begin/end

Example: Point-to-Point Protocol
(PPP)

  IETF standard, used for dialup and leased lines

  Flag is special and indicates start/end of frame
  Occurrences of flag inside payload must be “stuffed”

  Like an “escape” character:
•  “  \”

  Replace 0x7E with 0x7D, 0x5E
  Replace 0x7D with 0x7D, 0x5D

  Problems?
  Why not use a length field?

(header) (variable) (0x7E) (trailer) (0x7E)

Example: SONET

  Standard for long distance transmission over optical
networks
  Base rate STS-1 of 51.84 Mbps
  STS-192 in use

  All packets are 125 μs long  start frame synch bytes
just used for synchronization

  No character stuffing, no need for length field to find
end of frames
  Why not always do things SONET style?

Error Detection and Redundancy

  Noise can flip some of the bits we receive
  We must be able to detect when this occurs!
  Who needs to detect it? (links/routers, OSs, or

apps?)

  Basic approach: add redundant data
  Error detection codes allow errors to be recognized
  Error correction codes allow errors to be repaired too

Motivating Example

  A simple error detection scheme:
  Just send two copies. Differences imply errors.

  Question: Can we do any better?
  With less overhead
  Catch more kinds of errors

  Answer: Yes – stronger protection with fewer bits
  But we can’t catch all inadvertent errors, nor malicious ones

  We will look at basic block codes
  K bits in, N bits out is a (N,K) code
  Simple, memoryless mapping

The Hamming Distance

  Errors must not turn one valid codeword into another valid
codeword, or we cannot detect/correct them.

  Hamming distance of a code is the smallest number of bit
differences that turn any one codeword into another
  e.g, code 000 for 0, 111 for 1, Hamming distance is 3

  For code with distance d+1:
  d errors can be detected, e.g, 001, 010, 110, 101, 011

  For code with distance 2d+1:
  d errors can be corrected, e.g., 001  000

Parity

  Start with n bits and add another so that the total
number of 1s is even (even parity)
  e.g. 0110010  01100101
  Easy to compute as XOR of all input bits

  Will detect an odd number of bit errors
  But not an even number

  Does not correct any errors

2D Parity

  Add parity row/column to array of
bits

  How many simultaneous bit errors
can it detect?

  Which errors can it correct?

0101001 1
1101001 0
1011110 1
0001110 1
0110100 1
1011111 0

1111011 0

Checksums

  Used in Internet protocols (IP, ICMP, TCP, UDP)
  Basic Idea: Add up the data and send it along with sum

  Algorithm:
  checksum is the 1s complement of the 1s

complement sum of the data interpreted 16 bits at a
time (for 16-bit TCP/UDP checksum)

  1s complement: flip all bits to make number negative
  Consequence: adding requires carryout to be added

back

CRCs (Cyclic Redundancy Check)

  Stronger protection than checksums
  Used widely in practice, e.g., Ethernet CRC-32
  Implemented in hardware (XORs and shifts)

  Algorithm: Given n bits of data, generate a k bit check
sequence that gives a combined n + k bits that are
divisible by a chosen divisor C(x)

  Based on mathematics of finite fields
  “numbers” correspond to polynomials, use modulo

arithmetic
  e.g, interpret 10011010 as x7 + x4 + x3 + x1

CRC Example

  Extend message with k
 0’s, when using a k
-degree generator

  Divide message by
 generator (XOR)

  Discard result
  Subtract remainder

 from original message

  On reception, check
 that message is
 divisible by generator

How is C(x) Chosen?

  Mathematical properties:
  All 1-bit errors if non-zero xk and x0 terms
  All 2-bit errors if C(x) has a factor with at least three

terms
  Any odd number of errors if C(x) has (x + 1) as a

factor
  Any burst error < k bits

  There are standardized polynomials of different degree
that are known to catch many errors
  Ethernet CRC-32:

100000100110000010001110110110111

Error Correction

  Two strategies to correct errors:
  Detect and retransmit, or Automatic Repeat reQuest.

(ARQ)
  Error correcting codes, or Forward Error Correction

(FEC)
  Retransmissions typically at higher levels (Network+).

Why?

  Question: Which should we choose?

Retransmissions vs. FEC

  The better option depends on the kind of errors and the
cost of recovery

  Example: Message with 1000 bits, Prob(bit error) 0.001
  Case 1: random errors
  Case 2: bursts of 1000 errors
  Case 3: real-time application (teleconference)

ARQ: Stop-and-Wait

  Idea: transmit and wait for an ACK
  Sender sets a timer
  He retransmits if doesn’t hear

an ACK before the timer expires
  What should the timeout be?
  Do we need sequence numbers?

  Efficiency?
  E.g., 1.5 Mbps link

with 45ms RTT,
1500 byte frame 
1500 * 8 / .045 = 267 Kbps

ARQ: Sliding Window

  Idea: have more than one
 outstanding packet

  LFS – LAR ≤SWS, LAF – LFR ≤ RWS
  How big should SWS and RWS be?
  Sequence numbers?
  Flow Control?
  Cumulative ACKS
  Selective ACKs? NACKs?

Last Acknowledged
Received

Last Frame
Sent

Send Window Size Receive Window Size

Last Frame
Received

Largest Acceptable
Frame

FEC: Reed-Solomon / BCH Codes

  Developed to protect data on magnetic disks
  Used for CDs and cable modems too
  Property: 2t redundant bits can correct <= t errors
  Mathematics somewhat more involved …

Key Concepts

  Senders “frame” messages with sentinels, length fields,
and clock synch, so receivers can determine where they
start and end

  Redundant bits are added to messages to protect
against transmission errors.

  Two recovery strategies are retransmissions (ARQ) and
error correcting codes (FEC)

