
CSE 461: Protocols and Layering
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Some Administravia

1. Office hours for both instructors and TAs finalized & on web site

2. Homework will be given out Wednesday and due the following week

3. Project 1 is available now and will be due October 17

2



This Lecture

1. The entire course in 10 slides
           a/k/a, a top-down look at the Internet

2. Protocols, layering and standards

3. The end-to-end principle
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1. A Brief Tour of the Internet

 What happens when you “click” on a web link?

 This is the view from 10,000 ft … 

You at home
(client) www.google.com

(server)

Internet
request

response
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9,000 ft: Caching

 Lookup a cache before making the full request

 Check cache (local or proxy) for a copy
 Check with server for a new version
 Question: what does caching improve?

Cache

“Changed?”

“Here it is.”

“Have it?”
“Yes, from 12:42pm”

google
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8,000 ft: Naming (DNS)

 Map domain names to IP network addresses

 All messages are sent using IP addresses
 So we have to translate names to addresses first
 But we cache translations to avoid doing it next time  

(how do we check for consistency?)

“What’s the IP address for www.google.com?”

“It’s 207.200.75.200”

128.95.2.106

Nameserver

128.95.2.1
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 A single web page 
can be multiple 
“objects”

 Fetch each “object” 
either sequentially or 
in parallel

 Parallel requests 
often called 
“pipelining”

7,000 ft: Sessions (HTTP)

GET index.html

GET ad.gif
GET logo.gif

google

index.html

ad

logo

you

time
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6,000 ft: Packets (TCP) 

 Long messages are broken into packets
 Maximum Ethernet packet is 1.5 Kbytes
 Typical web page is 10 Kbytes

 Number the segments for reassembly and loss detection

1. GET2. inde3. x.ht4. ml

GET index.html
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5,000 ft: Reliability (TCP)

 Packets can (and do) get lost

 We acknowledge successful receipt and detect and 
retransmit lost messages (e.g., timeouts)
 ACK vs. NACK

(lost)
retransmission

acknowledgment
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4,000 ft: Congestion (TCP)
 Need to “allocate” bandwidth between users

 The magic of statistical multiplexing
 Statistical Multiplexing: key concept in networking
 Queuing: alien concept in circuit switched networks

 Senders balance available and required bandwidths by 
probing network path and observing the response

How fast can
I send?
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3,000 ft: Routing (IP)

 Packets are directed through many routers
 “IP addresses” tell each packet its destination
 The maze is traversed using protocols like BGP

R

R

R

RRHH

H

H

H

R

RH

R

H: Hosts

R: RoutersInternet

11



2,000 ft: Multi-access (e.g., 
Ethernet)

 May need to share links with other senders

 Send Ethernet “frame”.  Collisions can occur if more than one 
node sends at once (back in “The Day” when Ethernet was a 
bus)
 Why is minimum allowed packet length determined by max 

allowed cable length and transmit speed?
 Ethernet “addresses” (really, identifiers) vs. IP addresses
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1,000 ft: Framing/Modulation

 Protect, delimit and modulate payload as signal

E.g, for cable, take payload, add error protection 
(Reed-Solomon), header and framing, then turn into 
a signal

Sync / Unique Payload w/ error correcting codeHeader
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2. Protocols and Layering

 We need abstractions to handle all this system complexity

A protocol is an agreement dictating the form and function
of data exchanged between parties to effect communication

 Two parts:
 Syntax:  format -- where the bits go
 Semantics:  meaning -- what the words mean, what to 

do with them
 Examples:

 IP, the Internet protocol; TCP and HTTP, for the Web
 You can make up your own
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Protocol Standards

 Different functions require different protocols
 A “standard” protocol is one that has been carefully specified 

so that different implementations can interoperate.
 Standardized: screws, batteries
 Not standardized: Appliances, furniture

 Thus there are many protocol standards
 E.g., IP, TCP, UDP, HTTP, DNS, FTP, SMTP, NNTP, ARP, Ethernet/802.3, 802.11, RIP, OPSF, 

802.1D, NFS, ICMP, IGMP, DVMRP, IPSEC, PIM-SM, BGP, …
 Organizations: IETF, IEEE, ITU
 IETF (www.ietf.org) specifies Internet-related protocols

 RFCs (Requests for Comments)
 “We reject kings, presidents and voting. We believe in 

rough consensus and running code.” – Dave Clark.
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Layering and Protocol Stacks

 Layering is how we combine protocols
 Higher level protocols build on services provided by 

lower levels
 Peer layers communicate with each other 

Layer N+1
e.g., HTTP

Layer N
e.g., TCP

You Yahoo!
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Layering Mechanics
 Encapsulation and de(en)capsulation

Analogy: A packet is an envelope.
 What’s written on the outside is the header
 What’s contained on the inside is the payload
 The payload may, itself, be another envelope
 Each layer understands (and acts on) the writing on the outside, 

but doesn’t understand what it contains – just delivers it.

Hdr

Hdr Data

Data+

+

Messages
passed

between
layers
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Example – Layering at work

TCP

IP

Ethernet

TCP

IP

CATV

IP IP

Ethernet CATV

host host

home router
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A Packet on the Wire

 Starts looking like an onion!

 Each layer treats all layers above/after it as opaque 
payload – the contents of the envelope

 We’re still leaving out some details (segmentation and 
reassembly, for 

 Layering adds overhead

IP Hdr Payload (Web object)TCP Hdr HTTP HdrEthernet Hdr

Start of packet End of packet
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What’s Inside a Packet
IP Hdr Payload (Web object)TCP Hdr HTTP HdrEthernet Hdr

Top (start)

Bottom (end)
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What’s Inside a Packet
FROM=00:30:65:0a:ea:62, 
TO=00:30:64:9a:11:22,

SIZE=200,…

IP Hdr Payload (Web object)TCP Hdr HTTP HdrEthernet Hdr

Top (start)

Bottom (end)

20



What’s Inside a Packet
FROM=00:30:65:0a:ea:62, 
TO=00:30:64:9a:11:22,

SIZE=200,…
Ethernet Header:  

IP Hdr Payload (Web object)TCP Hdr HTTP HdrEthernet Hdr

Top (start)

Bottom (end)
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What’s Inside a Packet
FROM=00:30:65:0a:ea:62, 
TO=00:30:64:9a:11:22,

SIZE=200,…
Ethernet Header:  

IP  Header:

IP Hdr Payload (Web object)TCP Hdr HTTP HdrEthernet Hdr

Top (start)

Bottom (end)
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What’s Inside a Packet
FROM=00:30:65:0a:ea:62, 
TO=00:30:64:9a:11:22,

SIZE=200,…
FROM=128.95.1.32,

TO=28.2.5.1,
SIZE=200-SIZEOF(Ehdr)

Ethernet Header:  

IP  Header:

IP Hdr Payload (Web object)TCP Hdr HTTP HdrEthernet Hdr

Top (start)

Bottom (end)
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What’s Inside a Packet
FROM=00:30:65:0a:ea:62, 
TO=00:30:64:9a:11:22,

SIZE=200,…
FROM=128.95.1.32,

TO=28.2.5.1,
SIZE=200-SIZEOF(Ehdr)

Ethernet Header:  

IP  Header:

TCP Header:

IP Hdr Payload (Web object)TCP Hdr HTTP HdrEthernet Hdr

Top (start)

Bottom (end)
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What’s Inside a Packet
FROM=00:30:65:0a:ea:62, 
TO=00:30:64:9a:11:22,

SIZE=200,…
FROM=128.95.1.32,

TO=28.2.5.1,
SIZE=200-SIZEOF(Ehdr)

Ethernet Header:  

IP  Header:

FROM=Port 5000,
TO=Port 80,
Byte#=23,

SIZE=200-SIZEOF(Ehdr)-SIZEOF(IPHdr)

TCP Header:

IP Hdr Payload (Web object)TCP Hdr HTTP HdrEthernet Hdr

Top (start)

Bottom (end)

20



What’s Inside a Packet
FROM=00:30:65:0a:ea:62, 
TO=00:30:64:9a:11:22,

SIZE=200,…
FROM=128.95.1.32,

TO=28.2.5.1,
SIZE=200-SIZEOF(Ehdr)

Ethernet Header:  

IP  Header:

FROM=Port 5000,
TO=Port 80,
Byte#=23,

SIZE=200-SIZEOF(Ehdr)-SIZEOF(IPHdr)

TCP Header:

HTTP Hdr:

IP Hdr Payload (Web object)TCP Hdr HTTP HdrEthernet Hdr

Top (start)

Bottom (end)
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What’s Inside a Packet
FROM=00:30:65:0a:ea:62, 
TO=00:30:64:9a:11:22,

SIZE=200,…
FROM=128.95.1.32,

TO=28.2.5.1,
SIZE=200-SIZEOF(Ehdr)

Ethernet Header:  

IP  Header:

FROM=Port 5000,
TO=Port 80,
Byte#=23,

SIZE=200-SIZEOF(Ehdr)-SIZEOF(IPHdr)

HTTP v.1.0,  Internet Explorer v5.1,…

TCP Header:

HTTP Hdr:

IP Hdr Payload (Web object)TCP Hdr HTTP HdrEthernet Hdr

Top (start)

Bottom (end)
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What’s Inside a Packet
FROM=00:30:65:0a:ea:62, 
TO=00:30:64:9a:11:22,

SIZE=200,…
FROM=128.95.1.32,

TO=28.2.5.1,
SIZE=200-SIZEOF(Ehdr)

Ethernet Header:  

IP  Header:

FROM=Port 5000,
TO=Port 80,
Byte#=23,

SIZE=200-SIZEOF(Ehdr)-SIZEOF(IPHdr)

HTTP v.1.0,  Internet Explorer v5.1,…

TCP Header:

HTTP Hdr:

IP Hdr Payload (Web object)TCP Hdr HTTP HdrEthernet Hdr

Good Stuff

Top (start)

Bottom (end)

20



What’s Inside a Packet
FROM=00:30:65:0a:ea:62, 
TO=00:30:64:9a:11:22,

SIZE=200,…
FROM=128.95.1.32,

TO=28.2.5.1,
SIZE=200-SIZEOF(Ehdr)

Ethernet Header:  

IP  Header:

FROM=Port 5000,
TO=Port 80,
Byte#=23,

SIZE=200-SIZEOF(Ehdr)-SIZEOF(IPHdr)

HTTP v.1.0,  Internet Explorer v5.1,…

TCP Header:

HTTP Hdr:

IP Hdr Payload (Web object)TCP Hdr HTTP HdrEthernet Hdr

GET http://www.google.comGood Stuff

Top (start)

Bottom (end)
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More Layering Mechanics

 Multiplexing and demultiplexing in a protocol graph

UDPTCP

ARPIP

Ethernet

SMTP HTTP

802.2 identifier

IP protocol field

TCP port number
ICMP

Other weird stuff
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The “OSI” Model

Application

Presentation

Session

Transport

Network

Datalink

Physical

Many
(HTTP,SMTP)

TCP / UDP

IP

Many
(Ethernet, …)

Model Protocols

To be honest, mostly obsolete, but I feel obligated
to tell you about it in case someone important asks you.
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3. The End-to-End Principle

Key Question: What functionality goes in which protocol?

 The “End to End Argument” (Reed, Saltzer, Clark, 1984):

Functionality should be implemented at a lower layer only
if it can be correctly and completely implemented.

(Sometimes an incomplete implementation can be useful
as a performance optimization.)

 Tends to push functions to the endpoints, which has aided the 
extensibility of the Internet.

23



The End-to-End Principle

 The inside (network) is usually considered dumb and stateless
 The end-points (hosts) are smart and stateful

 Examples:
 Reliability.  Re-transmission is done by endpoints.

• What would the advantages of in-network re-tx be?

 Congestion control.

 Name resolution.  DNS resolution is a separate step between 
endpoints.

• They could have integrated naming and routing.
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The Internet Hourglass: A Narrow 
Waist

The “narrow 
waist”

is crucial to 
letting the 

network evolve.

Comparison: 
Telephone 
network.
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Pros of the End-to-End 
 Don’t impose performance penalty on applications that don’t need it

 If we put reliability into Ethernet, IP, etc., then apps that don’t 
need reliability pay for it

 Complex middle = complex interface.  Specifying policy is HARD! 
 ATM failed.  This is part of the reason.

 You need it at the end-points anyway; may as well not do it twice
 Checksums on big files

 By keeping state at the end-points, not in the network, the only 
failure you can’t survive is a failure of the end-points
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Cons of the End-to-End 
principle

 Loss of efficiency
 The end-to-end principle is sometimes relaxed

 End-points are also hard to change en masse
 New versions of TCP can’t “just be deployed”

 End-points no longer trust each other to be good actors.  Result?
 Routers now enforce bandwidth fairness (RED)
 Firewalls now impose security restrictions
 Caches now intercept your requests and satisfy them

• Akamai and other CDNs (“reverse caching”): good design
• Transparent proxy caching: breaks things
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Key Concepts

 The Internet is complicated

 Protocol layers are the modularity that is used in networks to 
handle complexity

 The end-to-end principle gives us general guidance that 
complicated things should go at the edges of the network

 The simple, “narrow waist” lets technology evolve both above 
and below it without throwing everything out.
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Project Description (if time)

 You will implement a simple protocol using both TCP and 
UDP

 Write a client in C that talks to a server and extracts its 
sweet, sweet secrets

 Can be done on any host/OS, but Linux preferred – 
that’s what the future stages of the project will use

 The “Berkeley socket interface” is covered by Ivan
 Due Friday, October 17
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