
CSE 461: Protocols and Layering

1

Some Administravia

1. Office hours for both instructors and TAs finalized & on web site

2. Homework will be given out Wednesday and due the following week

3. Project 1 is available now and will be due October 17

2

This Lecture

1. The entire course in 10 slides
 a/k/a, a top-down look at the Internet

2. Protocols, layering and standards

3. The end-to-end principle

3

1. A Brief Tour of the Internet

 What happens when you “click” on a web link?

 This is the view from 10,000 ft …

You at home
(client) www.google.com

(server)

Internet
request

response

4

9,000 ft: Caching

 Lookup a cache before making the full request

 Check cache (local or proxy) for a copy
 Check with server for a new version
 Question: what does caching improve?

Cache

“Changed?”

“Here it is.”

“Have it?”
“Yes, from 12:42pm”

google

5

8,000 ft: Naming (DNS)

 Map domain names to IP network addresses

 All messages are sent using IP addresses
 So we have to translate names to addresses first
 But we cache translations to avoid doing it next time

(how do we check for consistency?)

“What’s the IP address for www.google.com?”

“It’s 207.200.75.200”

128.95.2.106

Nameserver

128.95.2.1

6

 A single web page
can be multiple
“objects”

 Fetch each “object”
either sequentially or
in parallel

 Parallel requests
often called
“pipelining”

7,000 ft: Sessions (HTTP)

GET index.html

GET ad.gif
GET logo.gif

google

index.html

ad

logo

you

time

7

6,000 ft: Packets (TCP)

 Long messages are broken into packets
 Maximum Ethernet packet is 1.5 Kbytes
 Typical web page is 10 Kbytes

 Number the segments for reassembly and loss detection

1. GET2. inde3. x.ht4. ml

GET index.html

8

5,000 ft: Reliability (TCP)

 Packets can (and do) get lost

 We acknowledge successful receipt and detect and
retransmit lost messages (e.g., timeouts)
 ACK vs. NACK

(lost)
retransmission

acknowledgment

9

4,000 ft: Congestion (TCP)
 Need to “allocate” bandwidth between users

 The magic of statistical multiplexing
 Statistical Multiplexing: key concept in networking
 Queuing: alien concept in circuit switched networks

 Senders balance available and required bandwidths by
probing network path and observing the response

How fast can
I send?

10

3,000 ft: Routing (IP)

 Packets are directed through many routers
 “IP addresses” tell each packet its destination
 The maze is traversed using protocols like BGP

R

R

R

RRHH

H

H

H

R

RH

R

H: Hosts

R: RoutersInternet

11

2,000 ft: Multi-access (e.g.,
Ethernet)

 May need to share links with other senders

 Send Ethernet “frame”. Collisions can occur if more than one
node sends at once (back in “The Day” when Ethernet was a
bus)
 Why is minimum allowed packet length determined by max

allowed cable length and transmit speed?
 Ethernet “addresses” (really, identifiers) vs. IP addresses

12

1,000 ft: Framing/Modulation

 Protect, delimit and modulate payload as signal

E.g, for cable, take payload, add error protection
(Reed-Solomon), header and framing, then turn into
a signal

Sync / Unique Payload w/ error correcting codeHeader

13

2. Protocols and Layering

 We need abstractions to handle all this system complexity

A protocol is an agreement dictating the form and function
of data exchanged between parties to effect communication

 Two parts:
 Syntax: format -- where the bits go
 Semantics: meaning -- what the words mean, what to

do with them
 Examples:

 IP, the Internet protocol; TCP and HTTP, for the Web
 You can make up your own

14

Protocol Standards

 Different functions require different protocols
 A “standard” protocol is one that has been carefully specified

so that different implementations can interoperate.
 Standardized: screws, batteries
 Not standardized: Appliances, furniture

 Thus there are many protocol standards
 E.g., IP, TCP, UDP, HTTP, DNS, FTP, SMTP, NNTP, ARP, Ethernet/802.3, 802.11, RIP, OPSF,

802.1D, NFS, ICMP, IGMP, DVMRP, IPSEC, PIM-SM, BGP, …
 Organizations: IETF, IEEE, ITU
 IETF (www.ietf.org) specifies Internet-related protocols

 RFCs (Requests for Comments)
 “We reject kings, presidents and voting. We believe in

rough consensus and running code.” – Dave Clark.

15

http://www.ietf.org/
http://www.ietf.org/

Layering and Protocol Stacks

 Layering is how we combine protocols
 Higher level protocols build on services provided by

lower levels
 Peer layers communicate with each other

Layer N+1
e.g., HTTP

Layer N
e.g., TCP

You Yahoo!

16

Layering Mechanics
 Encapsulation and de(en)capsulation

Analogy: A packet is an envelope.
 What’s written on the outside is the header
 What’s contained on the inside is the payload
 The payload may, itself, be another envelope
 Each layer understands (and acts on) the writing on the outside,

but doesn’t understand what it contains – just delivers it.

Hdr

Hdr Data

Data+

+

Messages
passed

between
layers

17

Example – Layering at work

TCP

IP

Ethernet

TCP

IP

CATV

IP IP

Ethernet CATV

host host

home router

18

A Packet on the Wire

 Starts looking like an onion!

 Each layer treats all layers above/after it as opaque
payload – the contents of the envelope

 We’re still leaving out some details (segmentation and
reassembly, for

 Layering adds overhead

IP Hdr Payload (Web object)TCP Hdr HTTP HdrEthernet Hdr

Start of packet End of packet

19

What’s Inside a Packet
IP Hdr Payload (Web object)TCP Hdr HTTP HdrEthernet Hdr

Top (start)

Bottom (end)

20

What’s Inside a Packet
FROM=00:30:65:0a:ea:62,
TO=00:30:64:9a:11:22,

SIZE=200,…

IP Hdr Payload (Web object)TCP Hdr HTTP HdrEthernet Hdr

Top (start)

Bottom (end)

20

What’s Inside a Packet
FROM=00:30:65:0a:ea:62,
TO=00:30:64:9a:11:22,

SIZE=200,…
Ethernet Header:

IP Hdr Payload (Web object)TCP Hdr HTTP HdrEthernet Hdr

Top (start)

Bottom (end)

20

What’s Inside a Packet
FROM=00:30:65:0a:ea:62,
TO=00:30:64:9a:11:22,

SIZE=200,…
Ethernet Header:

IP Header:

IP Hdr Payload (Web object)TCP Hdr HTTP HdrEthernet Hdr

Top (start)

Bottom (end)

20

What’s Inside a Packet
FROM=00:30:65:0a:ea:62,
TO=00:30:64:9a:11:22,

SIZE=200,…
FROM=128.95.1.32,

TO=28.2.5.1,
SIZE=200-SIZEOF(Ehdr)

Ethernet Header:

IP Header:

IP Hdr Payload (Web object)TCP Hdr HTTP HdrEthernet Hdr

Top (start)

Bottom (end)

20

What’s Inside a Packet
FROM=00:30:65:0a:ea:62,
TO=00:30:64:9a:11:22,

SIZE=200,…
FROM=128.95.1.32,

TO=28.2.5.1,
SIZE=200-SIZEOF(Ehdr)

Ethernet Header:

IP Header:

TCP Header:

IP Hdr Payload (Web object)TCP Hdr HTTP HdrEthernet Hdr

Top (start)

Bottom (end)

20

What’s Inside a Packet
FROM=00:30:65:0a:ea:62,
TO=00:30:64:9a:11:22,

SIZE=200,…
FROM=128.95.1.32,

TO=28.2.5.1,
SIZE=200-SIZEOF(Ehdr)

Ethernet Header:

IP Header:

FROM=Port 5000,
TO=Port 80,
Byte#=23,

SIZE=200-SIZEOF(Ehdr)-SIZEOF(IPHdr)

TCP Header:

IP Hdr Payload (Web object)TCP Hdr HTTP HdrEthernet Hdr

Top (start)

Bottom (end)

20

What’s Inside a Packet
FROM=00:30:65:0a:ea:62,
TO=00:30:64:9a:11:22,

SIZE=200,…
FROM=128.95.1.32,

TO=28.2.5.1,
SIZE=200-SIZEOF(Ehdr)

Ethernet Header:

IP Header:

FROM=Port 5000,
TO=Port 80,
Byte#=23,

SIZE=200-SIZEOF(Ehdr)-SIZEOF(IPHdr)

TCP Header:

HTTP Hdr:

IP Hdr Payload (Web object)TCP Hdr HTTP HdrEthernet Hdr

Top (start)

Bottom (end)

20

What’s Inside a Packet
FROM=00:30:65:0a:ea:62,
TO=00:30:64:9a:11:22,

SIZE=200,…
FROM=128.95.1.32,

TO=28.2.5.1,
SIZE=200-SIZEOF(Ehdr)

Ethernet Header:

IP Header:

FROM=Port 5000,
TO=Port 80,
Byte#=23,

SIZE=200-SIZEOF(Ehdr)-SIZEOF(IPHdr)

HTTP v.1.0, Internet Explorer v5.1,…

TCP Header:

HTTP Hdr:

IP Hdr Payload (Web object)TCP Hdr HTTP HdrEthernet Hdr

Top (start)

Bottom (end)

20

What’s Inside a Packet
FROM=00:30:65:0a:ea:62,
TO=00:30:64:9a:11:22,

SIZE=200,…
FROM=128.95.1.32,

TO=28.2.5.1,
SIZE=200-SIZEOF(Ehdr)

Ethernet Header:

IP Header:

FROM=Port 5000,
TO=Port 80,
Byte#=23,

SIZE=200-SIZEOF(Ehdr)-SIZEOF(IPHdr)

HTTP v.1.0, Internet Explorer v5.1,…

TCP Header:

HTTP Hdr:

IP Hdr Payload (Web object)TCP Hdr HTTP HdrEthernet Hdr

Good Stuff

Top (start)

Bottom (end)

20

What’s Inside a Packet
FROM=00:30:65:0a:ea:62,
TO=00:30:64:9a:11:22,

SIZE=200,…
FROM=128.95.1.32,

TO=28.2.5.1,
SIZE=200-SIZEOF(Ehdr)

Ethernet Header:

IP Header:

FROM=Port 5000,
TO=Port 80,
Byte#=23,

SIZE=200-SIZEOF(Ehdr)-SIZEOF(IPHdr)

HTTP v.1.0, Internet Explorer v5.1,…

TCP Header:

HTTP Hdr:

IP Hdr Payload (Web object)TCP Hdr HTTP HdrEthernet Hdr

GET http://www.google.comGood Stuff

Top (start)

Bottom (end)

20

More Layering Mechanics

 Multiplexing and demultiplexing in a protocol graph

UDPTCP

ARPIP

Ethernet

SMTP HTTP

802.2 identifier

IP protocol field

TCP port number
ICMP

Other weird stuff

21

The “OSI” Model

Application

Presentation

Session

Transport

Network

Datalink

Physical

Many
(HTTP,SMTP)

TCP / UDP

IP

Many
(Ethernet, …)

Model Protocols

To be honest, mostly obsolete, but I feel obligated
to tell you about it in case someone important asks you.

22

3. The End-to-End Principle

Key Question: What functionality goes in which protocol?

 The “End to End Argument” (Reed, Saltzer, Clark, 1984):

Functionality should be implemented at a lower layer only
if it can be correctly and completely implemented.

(Sometimes an incomplete implementation can be useful
as a performance optimization.)

 Tends to push functions to the endpoints, which has aided the
extensibility of the Internet.

23

The End-to-End Principle

 The inside (network) is usually considered dumb and stateless
 The end-points (hosts) are smart and stateful

 Examples:
 Reliability. Re-transmission is done by endpoints.

• What would the advantages of in-network re-tx be?

 Congestion control.

 Name resolution. DNS resolution is a separate step between
endpoints.

• They could have integrated naming and routing.

24

The Internet Hourglass: A Narrow
Waist

The “narrow
waist”

is crucial to
letting the

network evolve.

Comparison:
Telephone
network.

25

Pros of the End-to-End
 Don’t impose performance penalty on applications that don’t need it

 If we put reliability into Ethernet, IP, etc., then apps that don’t
need reliability pay for it

 Complex middle = complex interface. Specifying policy is HARD!
 ATM failed. This is part of the reason.

 You need it at the end-points anyway; may as well not do it twice
 Checksums on big files

 By keeping state at the end-points, not in the network, the only
failure you can’t survive is a failure of the end-points

26

Cons of the End-to-End
principle

 Loss of efficiency
 The end-to-end principle is sometimes relaxed

 End-points are also hard to change en masse
 New versions of TCP can’t “just be deployed”

 End-points no longer trust each other to be good actors. Result?
 Routers now enforce bandwidth fairness (RED)
 Firewalls now impose security restrictions
 Caches now intercept your requests and satisfy them

• Akamai and other CDNs (“reverse caching”): good design
• Transparent proxy caching: breaks things

27

Key Concepts

 The Internet is complicated

 Protocol layers are the modularity that is used in networks to
handle complexity

 The end-to-end principle gives us general guidance that
complicated things should go at the edges of the network

 The simple, “narrow waist” lets technology evolve both above
and below it without throwing everything out.

28

Project Description (if time)

 You will implement a simple protocol using both TCP and
UDP

 Write a client in C that talks to a server and extracts its
sweet, sweet secrets

 Can be done on any host/OS, but Linux preferred –
that’s what the future stages of the project will use

 The “Berkeley socket interface” is covered by Ivan
 Due Friday, October 17

29

