
Security and Cryptography

CSE 461

Ben Greenstein
Jeremy Elson

TA: Ivan Beschastnikh

Administrivia

  Project 3, part 2 due December 5
  Special extended office hours: Tuesday, December

 2, 11:30-1:30 Room 218
  No HW this week

Security in Practice

  Attackers have the advantage
  Get to think outside the box
  Can exploit any unanticipated weakness
  Obscurity hard to maintain

  Defense
  Needs to anticipate all feasible attack vectors
  Hard to prove that no attack is possible

•  Even at the crypto level

  Hard to detect if an attack has been successful
  Hard to re-secure a system after an attack

Fundamental Tenet: If lots of smart people have failed
to break a system, then it probably won’t be broken

To Publish or Not to Publish

  If the good guys break your system, you’ll hear
about it

  If you publish your system, the white hats provide
free consulting by trying to crack it

  The black hats will learn about your system
anyway

  Today, most (but not all) commercial systems are
published; most military systems are not

To Publish or Not to Publish
(Part 2)

  If you discover a workable attack, what is your
responsibility?

  Gap between discovery of vulnerability, and
exploiting the vulnerability can be seconds

  Should notify vendor and publish

Some Old Examples

  Western Digital
  Compromise went undetected for months

  Thompson self-propagating back door login
  Reinstalls itself in every new version of UNIX

  Tiger team attempt on Pentagon computer
  No physical access

  Secure communications channel: one time pad
  paper tape of random #’s
  same tape used at sender, receiver
  system XORs to each bit before xmit/receive

Some Recent Examples

  House Keys
  ATM keypad
  Pacemakers
  Mifare transit smart cards
  Washington State Driver’s Licenses (EPC RFID)
  Electronic car keys
  Elevator controls
  Voting machines
  WEP

8

Network Security

  Networks are shared
  each packet traverses many devices on path from

 source to receiver

  Attacker might be in control of any of these devices
  Or other machines on the network
  Or administrative machines
  Or, …

Network Security

  How do you know messages aren’t:
  Copied
  Injected
  Replaced/modified
  Spoofed
  Inferred
  Prevented from being delivered
  …

10

Security Threats, Goals in ()’s

  Impersonation (Authentication)
  Pretend to be someone else to gain access to information or

services
  Lack of secrecy (Privacy)

  Eavesdrop on data over network
  Corruption (Integrity)

  Modify data over network
  Denial of Service (Message Delivery)

  Flood resource to deny use from legitimate users

Encryption

  Cryptographer chooses E, D and keys KE, KD
  Suppose everything is known (E, D, M and C), should

not be able to determine keys KE, KD and/or modify C
without detection

  provides basis for authentication, privacy and integrity

Sender
Plaintext (M)

Encrypt
E(M,KE)

Ciphertext (C)

Receiver
Plaintext (M)

Decrypt
D(C, KD)

How Secure is Encryption?

  An attacker who knows the algorithm we’re using
could try all possible keys

  Security of cryptography depends on the limited
computational power of the attacker

  A fairly small key (e.g. 128 bits) represents a
formidable challenge to the attacker

  Algorithms can also have weaknesses,
independent of key size

How Practical is Encryption

  Usability depends on being efficient for the good
guys

  Cost to the good guys tends to rise linearly with
key length

  Cost to search all keys rises exponentially with
key length

  How do we keep keys secret?
  Short keys: easy to remember, easy to break

How Secure are Passwords?

  UNIX passwords: time to check all 5 letter
passwords (lower case): 26^5 ~ 10M
  in 75, 1 day
  in 92, 10 seconds
  In 08, 0.001 seconds

  Extend password to six letters, require upper,
lower, number, control char: 70^6 ~ 600B
  in 92, 6 days
  in 08, with 1000 PC’s in parallel, < 1 second (!)

Password Attack/Response

  Moore’s Law: enables large number of passwords to be
checked very quickly

  Countermeasure
  Delay password check for 1 second, so can’t try them quickly
  Need to delay both successful and unsuccessful password

checks!

  Counter-countermeasure:
  Observe network traffic; extract any packet encrypted in

password; check various passwords offline

  Counter-counter-countermeasure:
  Kerberos: don’t use password to encrypt packets; instead use

password to encrypt file containing shared key; use shared key
to encrypt packets

  Counter-counter-counter-countermeasure: …

Cryptography

  Secret Key Cryptography (DES, IDEA, RCx, AES)
  Public Key Cryptography (RSA, Diffie-Hellman, DSS)
  Message Digests (MD4, MD5, SHA-1)

Secret Key

  Single key (symmetric) is shared between
parties, kept secret from everyone else
  Ciphertext = (M)^K; Plaintext = M = ((M)^K)^K
  if K kept secret, then both parties know M is authentic

and secret

Plaintext

Encrypt with
secret key

Ciphertext

Plaintext

Decrypt with
secret key

Secret Key Integrity: Message
Authentication Codes

Generate
MAC

Verify
MAC

MAC

Plaintext

Yes/No

Key Key

Challenge / Response
Authentication

Alice (knows K) Bob (knows K)

I’m Alice Pick Random R
Encrypt R using K

If you’re Alice, decrypt (R)^K

(R+1)^K

Bob thinks Alice is fresh

Secret Key Algorithms

  DES (Data Encryption Standard) – 1970’s IBM,
NSA?
  56 bit key (+ 8 parity bits) => has become too

small
  Input and output are 64 bit blocks
  slow in software, based on (gratuitous?) bit

twiddling

Other Ciphers

  Triple-DES
  DES three times

•  mc = E(D(E(mp, k1), k2, k3)
  Effectively 112 bits
  Three times as slow as DES

  Blowfish
  Developed by Bruce Schneier circa 1993
  Variable key size from 32 to 448 bits
  Very fast on large general purpose CPUs (modern PCs)
  Not very easy to implement in small hardware

  Advanced Encryption Standard (AES)
  Selected by NIST as replacement for DES in 2001
  Uses the Rijndael algorithm
  Keys of 128, 192 or 256 bits

Encrypting Large Messages

  The basic algorithms encrypt a fixed size block
  Obvious solution is to encrypt a block at a time.

This is called Electronic Code Book (ECB)
  Leaks data: repeated plaintext blocks yield

repeated ciphertext blocks
  Does not guarantee integrity!

  Other modes “chain” to avoid this (CBC, CFB,
OFB)

CBC (Cipher Block Chaining)

IV M1 M2 M3 M4

IV C1 C2 C3 C4

E E E E

CBC Decryption

IV C1 C2 C3 C4

IV M1 M2 M3 M4

D D D D

XOR (Exclusive-OR)

  Bitwise operation with two inputs where the output
bit is 1 if exactly one of the two input bits is one

  (B XOR A) XOR A) = B
  If A is a “one time pad”, very efficient and secure
  Common encryption schemes (e.g. RC4) calculate

a pseudo-random stream from a key

Public Key Encryption

  Keys come in pairs, public and private
  Each entity (user, host, router,…) gets its own pair
  Public key can be published; private is secret to entity

•  can’t derive K-private from K-public, even given M,
(M)^K-priv

  If encrypt with receiver’s public key, ensures can only be read by
receiver

Plaintext

Encrypt with
public key

Secret Ciphertext

Plaintext

Decrypt with
private key

Public Key Integrity Protection

Generate
Signature

Verify
Signature

Signature

Plaintext

Yes/No

Private Key
(of sender)

Public Key

Zero Knowledge Authentication

  Where to keep your private key?
  keys that are easy to remember, are easier to break
  keys that aren’t easy to break, can’t be remembered!
  If stored online, can be captured

  Instead, store private key inside a chip
  use challenge-response to authenticate user

a

challenge: x

response:

(x+1)^K-private

dongle

Public Key -> Session Key

  Public key encryption/decryption is slow; so can use
public key to establish (shared) session key
  If both sides know each other’s public key

((K,y,x+1)^C-public)^S-priv

client server client ID, x

(y+1)^K

client
authenticates

server server
authenticates

client

Public Key Distribution

  How do we know public key of other side?
  infeasible for every host to know everyone’s key
  need public key infrastructure (PKI)

  Certificates (X.509)
  Distribute keys by trusted certificate authority (CA)

•  “I swear X’s public key is Y”, signed by CA (their private key)

  Example CA’s: Verisign, Microsoft, UW CS Dept., …
  But! Doesn’t mean entity is trustworthy!

  How do we know public key of CA?
  Typically, hard-coded into browsers
  Alternative: build chain of trust, e.g., from UW’s

CA to list of CA’s that UW trusts

Public Key Revocation

  What if a private key is compromised?
  Hope it never happens?

  Need certificate revocation list (CRL)
  and a CRL authority for serving the list
  everyone using a certificate is responsible for

checking to see if it is on CRL
  ex: certificate can have two timestamps

•  one long term, when certificate times out
•  one short term, when CRL must be checked
•  CRL is online, CA can be offline

Secret Key -> Session Key

  In secret key systems, how do we get a secret with
other side?
  infeasible for everyone to share a secret with

everyone else
  Solution: “authentication server” (Kerberos)

  everyone shares (a separate) secret with server
  server provides session key for A <-> B
  everyone trusts authentication server

•  if compromise server, can do anything!

Kerberos

  Developed at MIT
  Based on secret key cryptography
  Code is publicly available (for a long time not

legally exportable from the U.S.)
  Early version used block cipher

  Vulnerability caught and fixed
  Embedded in a variety of commercial products

  Ex: in use by UW CSE

Kerberos Authentication (Basic)

Alice KDC Bob

Alice wants Bob

{“Bob”, Kab, {“Alice”,Kab}^Kb}^Ka

{“Alice”, Kab}^Kb, {timestamp}^Kab

{timestamp+1}^Kab

Ticket Granting Tickets

  It is dangerous for the workstation to hold Alice’s
secret for her entire login session

  Instead, Alice uses her password to get a short
lived “ticket” to the “Ticket Granting Service”
which can be used to get tickets for a limited
time

  For a login session >8 hours, she must enter her
password again

Ticket Granting Tickets

  TGT looks just like ticket but encrypted with
KDC’s key

  WS keeps TGT = {“Alice”,S}Kkdc and S

Kerberos Authentication
(with TGT={“Alice”,S}Kkdc)

Alice KDC Bob

Alice wants Bob, TGT

{“Bob”, Kab, {“Alice”,Kab}^Kb}^ S

{“Alice”, Kab}^Kb, {timestamp}^Kab

{timestamp+1}^Kab

Pre-authentication

  Anyone can request a ticket on behalf of Alice,
and the response will be encrypted under her
password

  This allows an off-line password guessing attack
  Kerberos V5 requires an encrypted timestamp on

the request
  Only an eavesdropper can guess passwords

Kerberos Weaknesses

  Early versions of Kerberos had several security
flaws
  block cipher: allows encrypted blocks to be replaced

•  solution: add encrypted CRC over entire message

  uses timestamps to verify communication was recent
•  time server communication not encrypted (!)
•  get time from authentication server

  Kerberos login program downloaded over NFS
•  NFS authenticates requests, but data is unencrypted
•  disallow diskless operation?

Message Digests (MD5, SHA)

  Cryptographic checksum: message integrity
  Typically small compared to message (MD5 128 bits)
  “One-way”: infeasible to find two messages with

same digest

Transform

Initial digest Message (padded)

Transform

Message digest

512 bits 512 bits 512 bits

…

…

Transform

Comparative Performances

  According to Peterson and Davie
  MD5: 600 Mbps
  DES: 100 Mbps
  RSA: 0.1 Mbps

Example Systems

  Cryptography can be applied at multiple layers
  Pretty Good Privacy (PGP)

  For authentic and confidential email

  Secure Sockets (SSL) and Secure HTTP (HTTPS)
  For secure Web transactions

  IP Security (IPSEC)
  Framework for encrypting/authenticating IP packets

PGP

  Application level system
  Based on public keys and a “grass roots” Web of

trust
  Sign messages for integrity/authenticity

  Encrypt with private key of sender

  Encrypt messages for privacy
  Could just use public key of receiver …
  But encrypt message with secret key, and secret key

with public key of receiver to boost performance

SSL/TLS and HTTPS

  Secure transport layer targeted at Web transactions
  SSL/TLS inserted between TCP and HTTP to make secure HTTP

  Extra handshake phase to authenticate and exchange
shared session keys
  Client might authenticate Web server but not vice-versa

•  Certificate Authority embedded in Web browser

  Performance optimization
  Refer to shared state with session id
  Can use same parameters across connections

•  Client sends session id, allowing server to skip handshake

SSL/TLS

Client Server Initiate Request

Server Certificate Chain

{Session key}Server’s public key

{Data}Session key

IPSEC

  Framework for encrypted IP packets
  Choice of algorithms not specified

  Uses new protocol headers inside IPv4 packets
  Authentication header

•  For message integrity and origin authenticity
•  Optionally “anti-replay” protection (via sequence number)

  Encapsulating Security Payload
•  Adds encryption for privacy

  Depends on key distribution (ISAKAMP)
  Sets up security associations

  Ex: secure tunnels between corporate offices

Summary

  Security goals: Authenticity, Integrity, Privacy
  Public key crypto slow, good for signing
  Secret (symmetric) key faster, e.g., AES
  Important security practices: IPSEC, TLS/SSL, PGP,

802.11i

