
Security and Cryptography

CSE 461

Ben Greenstein
Jeremy Elson

TA: Ivan Beschastnikh

Administrivia

  Project 3, part 2 due December 5
  Special extended office hours: Tuesday, December

 2, 11:30-1:30 Room 218
  No HW this week

Security in Practice

  Attackers have the advantage
  Get to think outside the box
  Can exploit any unanticipated weakness
  Obscurity hard to maintain

  Defense
  Needs to anticipate all feasible attack vectors
  Hard to prove that no attack is possible

•  Even at the crypto level

  Hard to detect if an attack has been successful
  Hard to re-secure a system after an attack

Fundamental Tenet: If lots of smart people have failed
to break a system, then it probably won’t be broken

To Publish or Not to Publish

  If the good guys break your system, you’ll hear
about it

  If you publish your system, the white hats provide
free consulting by trying to crack it

  The black hats will learn about your system
anyway

  Today, most (but not all) commercial systems are
published; most military systems are not

To Publish or Not to Publish
(Part 2)

  If you discover a workable attack, what is your
responsibility?

  Gap between discovery of vulnerability, and
exploiting the vulnerability can be seconds

  Should notify vendor and publish

Some Old Examples

  Western Digital
  Compromise went undetected for months

  Thompson self-propagating back door login
  Reinstalls itself in every new version of UNIX

  Tiger team attempt on Pentagon computer
  No physical access

  Secure communications channel: one time pad
  paper tape of random #’s
  same tape used at sender, receiver
  system XORs to each bit before xmit/receive

Some Recent Examples

  House Keys
  ATM keypad
  Pacemakers
  Mifare transit smart cards
  Washington State Driver’s Licenses (EPC RFID)
  Electronic car keys
  Elevator controls
  Voting machines
  WEP

8

Network Security

  Networks are shared
  each packet traverses many devices on path from

 source to receiver

  Attacker might be in control of any of these devices
  Or other machines on the network
  Or administrative machines
  Or, …

Network Security

  How do you know messages aren’t:
  Copied
  Injected
  Replaced/modified
  Spoofed
  Inferred
  Prevented from being delivered
  …

10

Security Threats, Goals in ()’s

  Impersonation (Authentication)
  Pretend to be someone else to gain access to information or

services
  Lack of secrecy (Privacy)

  Eavesdrop on data over network
  Corruption (Integrity)

  Modify data over network
  Denial of Service (Message Delivery)

  Flood resource to deny use from legitimate users

Encryption

  Cryptographer chooses E, D and keys KE, KD
  Suppose everything is known (E, D, M and C), should

not be able to determine keys KE, KD and/or modify C
without detection

  provides basis for authentication, privacy and integrity

Sender
Plaintext (M)

Encrypt
E(M,KE)

Ciphertext (C)

Receiver
Plaintext (M)

Decrypt
D(C, KD)

How Secure is Encryption?

  An attacker who knows the algorithm we’re using
could try all possible keys

  Security of cryptography depends on the limited
computational power of the attacker

  A fairly small key (e.g. 128 bits) represents a
formidable challenge to the attacker

  Algorithms can also have weaknesses,
independent of key size

How Practical is Encryption

  Usability depends on being efficient for the good
guys

  Cost to the good guys tends to rise linearly with
key length

  Cost to search all keys rises exponentially with
key length

  How do we keep keys secret?
  Short keys: easy to remember, easy to break

How Secure are Passwords?

  UNIX passwords: time to check all 5 letter
passwords (lower case): 26^5 ~ 10M
  in 75, 1 day
  in 92, 10 seconds
  In 08, 0.001 seconds

  Extend password to six letters, require upper,
lower, number, control char: 70^6 ~ 600B
  in 92, 6 days
  in 08, with 1000 PC’s in parallel, < 1 second (!)

Password Attack/Response

  Moore’s Law: enables large number of passwords to be
checked very quickly

  Countermeasure
  Delay password check for 1 second, so can’t try them quickly
  Need to delay both successful and unsuccessful password

checks!

  Counter-countermeasure:
  Observe network traffic; extract any packet encrypted in

password; check various passwords offline

  Counter-counter-countermeasure:
  Kerberos: don’t use password to encrypt packets; instead use

password to encrypt file containing shared key; use shared key
to encrypt packets

  Counter-counter-counter-countermeasure: …

Cryptography

  Secret Key Cryptography (DES, IDEA, RCx, AES)
  Public Key Cryptography (RSA, Diffie-Hellman, DSS)
  Message Digests (MD4, MD5, SHA-1)

Secret Key

  Single key (symmetric) is shared between
parties, kept secret from everyone else
  Ciphertext = (M)^K; Plaintext = M = ((M)^K)^K
  if K kept secret, then both parties know M is authentic

and secret

Plaintext

Encrypt with
secret key

Ciphertext

Plaintext

Decrypt with
secret key

Secret Key Integrity: Message
Authentication Codes

Generate
MAC

Verify
MAC

MAC

Plaintext

Yes/No

Key Key

Challenge / Response
Authentication

Alice (knows K) Bob (knows K)

I’m Alice Pick Random R
Encrypt R using K

If you’re Alice, decrypt (R)^K

(R+1)^K

Bob thinks Alice is fresh

Secret Key Algorithms

  DES (Data Encryption Standard) – 1970’s IBM,
NSA?
  56 bit key (+ 8 parity bits) => has become too

small
  Input and output are 64 bit blocks
  slow in software, based on (gratuitous?) bit

twiddling

Other Ciphers

  Triple-DES
  DES three times

•  mc = E(D(E(mp, k1), k2, k3)
  Effectively 112 bits
  Three times as slow as DES

  Blowfish
  Developed by Bruce Schneier circa 1993
  Variable key size from 32 to 448 bits
  Very fast on large general purpose CPUs (modern PCs)
  Not very easy to implement in small hardware

  Advanced Encryption Standard (AES)
  Selected by NIST as replacement for DES in 2001
  Uses the Rijndael algorithm
  Keys of 128, 192 or 256 bits

Encrypting Large Messages

  The basic algorithms encrypt a fixed size block
  Obvious solution is to encrypt a block at a time.

This is called Electronic Code Book (ECB)
  Leaks data: repeated plaintext blocks yield

repeated ciphertext blocks
  Does not guarantee integrity!

  Other modes “chain” to avoid this (CBC, CFB,
OFB)

CBC (Cipher Block Chaining)

IV M1 M2 M3 M4

IV C1 C2 C3 C4

E E E E

CBC Decryption

IV C1 C2 C3 C4

IV M1 M2 M3 M4

D D D D

XOR (Exclusive-OR)

  Bitwise operation with two inputs where the output
bit is 1 if exactly one of the two input bits is one

  (B XOR A) XOR A) = B
  If A is a “one time pad”, very efficient and secure
  Common encryption schemes (e.g. RC4) calculate

a pseudo-random stream from a key

Public Key Encryption

  Keys come in pairs, public and private
  Each entity (user, host, router,…) gets its own pair
  Public key can be published; private is secret to entity

•  can’t derive K-private from K-public, even given M,
(M)^K-priv

  If encrypt with receiver’s public key, ensures can only be read by
receiver

Plaintext

Encrypt with
public key

Secret Ciphertext

Plaintext

Decrypt with
private key

Public Key Integrity Protection

Generate
Signature

Verify
Signature

Signature

Plaintext

Yes/No

Private Key
(of sender)

Public Key

Zero Knowledge Authentication

  Where to keep your private key?
  keys that are easy to remember, are easier to break
  keys that aren’t easy to break, can’t be remembered!
  If stored online, can be captured

  Instead, store private key inside a chip
  use challenge-response to authenticate user

a

challenge: x

response:

(x+1)^K-private

dongle

Public Key -> Session Key

  Public key encryption/decryption is slow; so can use
public key to establish (shared) session key
  If both sides know each other’s public key

((K,y,x+1)^C-public)^S-priv

client server client ID, x

(y+1)^K

client
authenticates

server server
authenticates

client

Public Key Distribution

  How do we know public key of other side?
  infeasible for every host to know everyone’s key
  need public key infrastructure (PKI)

  Certificates (X.509)
  Distribute keys by trusted certificate authority (CA)

•  “I swear X’s public key is Y”, signed by CA (their private key)

  Example CA’s: Verisign, Microsoft, UW CS Dept., …
  But! Doesn’t mean entity is trustworthy!

  How do we know public key of CA?
  Typically, hard-coded into browsers
  Alternative: build chain of trust, e.g., from UW’s

CA to list of CA’s that UW trusts

Public Key Revocation

  What if a private key is compromised?
  Hope it never happens?

  Need certificate revocation list (CRL)
  and a CRL authority for serving the list
  everyone using a certificate is responsible for

checking to see if it is on CRL
  ex: certificate can have two timestamps

•  one long term, when certificate times out
•  one short term, when CRL must be checked
•  CRL is online, CA can be offline

Secret Key -> Session Key

  In secret key systems, how do we get a secret with
other side?
  infeasible for everyone to share a secret with

everyone else
  Solution: “authentication server” (Kerberos)

  everyone shares (a separate) secret with server
  server provides session key for A <-> B
  everyone trusts authentication server

•  if compromise server, can do anything!

Kerberos

  Developed at MIT
  Based on secret key cryptography
  Code is publicly available (for a long time not

legally exportable from the U.S.)
  Early version used block cipher

  Vulnerability caught and fixed
  Embedded in a variety of commercial products

  Ex: in use by UW CSE

Kerberos Authentication (Basic)

Alice KDC Bob

Alice wants Bob

{“Bob”, Kab, {“Alice”,Kab}^Kb}^Ka

{“Alice”, Kab}^Kb, {timestamp}^Kab

{timestamp+1}^Kab

Ticket Granting Tickets

  It is dangerous for the workstation to hold Alice’s
secret for her entire login session

  Instead, Alice uses her password to get a short
lived “ticket” to the “Ticket Granting Service”
which can be used to get tickets for a limited
time

  For a login session >8 hours, she must enter her
password again

Ticket Granting Tickets

  TGT looks just like ticket but encrypted with
KDC’s key

  WS keeps TGT = {“Alice”,S}Kkdc and S

Kerberos Authentication
(with TGT={“Alice”,S}Kkdc)

Alice KDC Bob

Alice wants Bob, TGT

{“Bob”, Kab, {“Alice”,Kab}^Kb}^ S

{“Alice”, Kab}^Kb, {timestamp}^Kab

{timestamp+1}^Kab

Pre-authentication

  Anyone can request a ticket on behalf of Alice,
and the response will be encrypted under her
password

  This allows an off-line password guessing attack
  Kerberos V5 requires an encrypted timestamp on

the request
  Only an eavesdropper can guess passwords

Kerberos Weaknesses

  Early versions of Kerberos had several security
flaws
  block cipher: allows encrypted blocks to be replaced

•  solution: add encrypted CRC over entire message

  uses timestamps to verify communication was recent
•  time server communication not encrypted (!)
•  get time from authentication server

  Kerberos login program downloaded over NFS
•  NFS authenticates requests, but data is unencrypted
•  disallow diskless operation?

Message Digests (MD5, SHA)

  Cryptographic checksum: message integrity
  Typically small compared to message (MD5 128 bits)
  “One-way”: infeasible to find two messages with

same digest

Transform

Initial digest Message (padded)

Transform

Message digest

512 bits 512 bits 512 bits

…

…

Transform

Comparative Performances

  According to Peterson and Davie
  MD5: 600 Mbps
  DES: 100 Mbps
  RSA: 0.1 Mbps

Example Systems

  Cryptography can be applied at multiple layers
  Pretty Good Privacy (PGP)

  For authentic and confidential email

  Secure Sockets (SSL) and Secure HTTP (HTTPS)
  For secure Web transactions

  IP Security (IPSEC)
  Framework for encrypting/authenticating IP packets

PGP

  Application level system
  Based on public keys and a “grass roots” Web of

trust
  Sign messages for integrity/authenticity

  Encrypt with private key of sender

  Encrypt messages for privacy
  Could just use public key of receiver …
  But encrypt message with secret key, and secret key

with public key of receiver to boost performance

SSL/TLS and HTTPS

  Secure transport layer targeted at Web transactions
  SSL/TLS inserted between TCP and HTTP to make secure HTTP

  Extra handshake phase to authenticate and exchange
shared session keys
  Client might authenticate Web server but not vice-versa

•  Certificate Authority embedded in Web browser

  Performance optimization
  Refer to shared state with session id
  Can use same parameters across connections

•  Client sends session id, allowing server to skip handshake

SSL/TLS

Client Server Initiate Request

Server Certificate Chain

{Session key}Server’s public key

{Data}Session key

IPSEC

  Framework for encrypted IP packets
  Choice of algorithms not specified

  Uses new protocol headers inside IPv4 packets
  Authentication header

•  For message integrity and origin authenticity
•  Optionally “anti-replay” protection (via sequence number)

  Encapsulating Security Payload
•  Adds encryption for privacy

  Depends on key distribution (ISAKAMP)
  Sets up security associations

  Ex: secure tunnels between corporate offices

Summary

  Security goals: Authenticity, Integrity, Privacy
  Public key crypto slow, good for signing
  Secret (symmetric) key faster, e.g., AES
  Important security practices: IPSEC, TLS/SSL, PGP,

802.11i

