
Project 3
(contd. :)

cse461



Motivation
• Friend has an iTunes library that I would 

like to access, but unless we are on the 
same network, I can’t “see” her shares.



Motivation
• Friend has an iTunes library that I would 

like to access, but unless we are on the 
same network, I can’t “see” her shares.



Motivation
• Friend has an iTunes library that I would 

like to access, but unless we are on the 
same network, I can’t “see” her shares.

network 1 network 2



Motivation
• Friend has an iTunes library that I would 

like to access, but unless we are on the 
same network, I can’t “see” her shares.

X

network 1 network 2



server

Set up
• In this project, you will explore a 

centralized solution to this problem

network 1 network 2



One small problem..

• iTunes uses mDNS (IP Multicast) for discovery 
and a TCP connection to exchange play lists

• mDNS is non-trivial and you have little time to 
learn to rewrite mDNS packets and tunnel 
TCP connections

• Instead, we (you) will use our (your) own 
application!



BChat : Broadcast Chat

• Chat messages are 
sent via subnet 
broadcast

• All participants see 
all messages



BChat : Broadcast Chat

• Chat messages are 
sent via subnet 
broadcast

• All participants see 
all messages



BChat : Broadcast Chat

• Chat messages are 
sent via subnet 
broadcast

• All participants see 
all messages



Tunnel
Server

Tunneling BChat

X

• Chat messages 
are tunneled 
transparently via 
the server

X

Tunnel
Client

BChat
Client



BChat Client protocol

• Send subnet broadcast 
UDP msgs on port 52367

• Receive subnet broadcast 
msgs on port 52368

• UDP payload should 
contain a string of 
format: “name: message”



BChat Client protocol

• Send subnet broadcast 
UDP msgs on port 52367

• Receive subnet broadcast 
msgs on port 52368

• UDP payload should 
contain a string of 
format: “name: message”



BChat Client protocol

• Send subnet broadcast 
UDP msgs on port 52367

• Receive subnet broadcast 
msgs on port 52368

• UDP payload should 
contain a string of 
format: “name: message”



BChat Client protocol

• Send subnet broadcast 
UDP msgs on port 52367

• Receive subnet broadcast 
msgs on port 52368

• UDP payload should 
contain a string of 
format: “name: message”



Tunneling protocol

len, payload

len’, payload’

• Server and client 
exchange the same 
message type as in Step 1

typedef struct msg {
 uint32_t len;
 void* payload;
} msg_t;

Tunnel
Client

Tunnel
Server



Re-broadcasting Strategy

• Packets received from the Tunnel server by 
the Tunnel client need to be re-broadcast 
on the local network:

1. Translate src IP to router’s IP

2. Translate dst IP to local subnet bcast IP

3. Translate UDP src, and dst ports accordingly

4. Send translated packet on a raw socket



Requirements

• Tunneling client that interoperates with the 
tunneling server

• BChat client that interoperates with other 
BChat clients, and tunneling clients

• A BChat client interface that allows one to 
send new chat messages, and to see chat 
messages (e.g. stdin/stdout, curses, web..)



Extra Credit

• Use multicast instead of subnet broadcast for BChat messages

• Use your web-server from Project 2 to snoop, and show a log 
of all chat messages via a browser

• Use your web-server to provide a web interface to the BChat 
client

• Besides snooping, add a way to inject chat messages from the 
web-server on the router (the local subnet has to see these 
messages) via a web-interface

• Create a new application that uses the tunneling protocol in a 
novel manner



Due Date

• Everything due on Friday, 12/5 at 11:59 PM 
(last day of school)

• Include all source code, along with 
compilation/usage instructions


