
CSE 461: TCP (part 3)

Ben Greenstein

Jeremy Elson

TA: Ivan Beschastnikh

Thanks Tom Anderson and Ratul Mahajan for slides

Administrivia

Project 2
−  Part 3: Due Friday, 11/14, 11:59pm

2

Avoiding Small Packets
Nagle’s algorithm (sender side):

−  Only allow one outstanding segment smaller than the MSS
−  A “self-clocking” algorithm
−  But gets in the way for SSH etc. (TCP_NODELAY)

Delayed acknowledgements (receiver side)
−  Wait to send ACK, hoping to piggyback on reverse stream
−  But send one ACK per two data packets and use timeout on the

delay
−  Cuts down on overheads and allows coalescing
−  Otherwise a nuisance, e.g, RTT estimation

Irony: how do Nagle and delayed ACKs interact?
−  Consider a Web request

Bandwidth Allocation

How fast should a host, e.g., a web server, send
packets?

Two considerations:
−  Congestion:

•  sending too fast will cause packets to be lost in the network

−  Fairness:
•  different users should get their fair share of the bandwidth

Often treated together (e.g. TCP) but needn’t be.

Buffer absorbs bursts when input rate > output
If sending rate is persistently > drain rate, queue builds
Dropped packets represent wasted work

Destination
1.5-Mbps DSL link

Router

Source
2

Source
1 100-Mbps Ethernet

Congestion

Packets dropped here

Power = throughput / delay

At low load, throughput goes up
and delay remains small

At moderate load, delay is
increasing (queues) but
throughput doesn’t grow much

At high load, much loss and delay
increases greatly due to
retransmissions

Even worse, can oscillate!
load

Load Optimal

Th
ro

ug
hp

ut
/d

el
ay

Evaluating Congestion Control

Chapter 6, Figure 2

Router

Source
2

Source
1

Source
3

Router

Router

Destination
2

Destination
1

Fairness

Each flow from a source to a destination should (?) get an
equal share of the bottleneck link … depends on paths
and other traffic

Evaluating Fairness

First, need to define what is a fair allocation.
−  Consider n flows, each wants a fraction fi of the

bandwidth

Min-max fairness:
−  First satisfy all flows evenly up to the lowest fi..

Repeat with the remaining bandwidth.

Or proportional fairness
−  Depends on path length … f1

f2

f3

f4

Why is bandwidth allocation hard?

Given network and traffic, just work out fair share
and tell the sources …

But:
−  Demands come from many sources
−  Needed information isn’t in the right place
−  Demands are changing rapidly over time
−  Information is out-of-date by the time it’s conveyed
−  Network paths are changing over time

Designs affect Network services
TCP/Internet provides “best-effort” service

−  Implicit network feedback, host controls via window.
−  No strong notions of fairness

A network in which there are QOS (quality of service) guarantees
−  Rate-based reservations natural choice for some apps
−  But reservations are need a good characterization of traffic
−  Network involvement typically needed to provide a

guarantee

Former tends to be simpler to build, latter offers greater service
to applications but is more complex.

Case Study: TCP

The dominant means of bandwidth allocation today
Internet meltdowns in the late 80s (“congestion

collapse”) led to much of its mechanism
−  Jacobson’s slow-start, congestion avoidance [sic], fast

retransmit and fast recovery.

Main constraint was zero network support and de
facto backwards-compatible upgrades to the
sender
−  Infer packet loss and use it as a proxy for congestion

We will look at other models later …

TCP Before Congestion Control

Just use a fixed size sliding window!
−  Will under-utilize the network or cause unnecessary

loss

Congestion control dynamically varies the size of
the window to match sending and available
bandwidth
−  Sliding window uses minimum of cwnd, the congestion

window, and the advertised flow control window

The big question: how do we decide what size the
window should be?

TCP Congestion Control

Goal: efficiently and fairly allocate network
bandwidth
−  Robust RTT estimation
−  Additive increase/multiplicative decrease

•  oscillate around bottleneck capacity

−  Slow start
•  quickly identify bottleneck capacity

−  Fast retransmit
−  Fast recovery

Tracking the Bottleneck Bandwidth

Sending rate = window size/RTT
Multiplicative decrease

−  Timeout => dropped packet => sending too fast =>
cut window size in half

•  and therefore cut sending rate in half

Additive increase
−  Ack arrives => no drop => sending too slow =>

increase window size by one packet/window
•  and therefore increase sending rate a little

TCP “Sawtooth”

Oscillates around bottleneck bandwidth
−  adjusts to changes in competing traffic

Two users competing for
bandwidth:

Consider the sequence of moves
from AIMD, AIAD, MIMD,
MIAD.

Why AIMD?

What if TCP and UDP share link?

Independent of initial rates, UDP will get priority!
TCP will take what’s left.

What if two different TCP
implementations share link?

If cut back more slowly after drops => will grab
bigger share

If add more quickly after acks => will grab bigger
share

Incentive to cause congestion collapse!
−  Many TCP “accelerators”
−  Easy to improve perf at expense of network

One solution: enforce good behavior at router

Slow start

How do we find bottleneck bandwidth?
−  Start by sending a single packet

•  start slow to avoid overwhelming network
−  Multiplicative increase until get packet loss

•  quickly find bottleneck
−  Remember previous max window size

•  shift into linear increase/multiplicative decrease when get
close to previous max ~ bottleneck rate

•  called “congestion avoidance”

Slow Start

Quickly find the bottleneck bandwidth

TCP Mechanics Illustrated

21

Source Dest Router

100 Mbps

0.9 ms latency
10 Mbps

0 latency

Slow Start vs. Delayed Acks

Recall that acks are delayed by 200ms to wait for
application to provide data

But (!) TCP congestion control triggered by acks
−  if receive half as many acks => window grows half as

fast

Slow start with window = 1
−  ack will be delayed, even though sender is waiting for

ack to expand window

Avoiding burstiness: ack pacing

Sender Receiver

bottleneck

packets

acks

Window size = round trip delay * bit rate

Ack Pacing After Timeout

Packet loss causes timeout,
disrupts ack pacing
−  slow start/additive increase are
designed to cause packet loss

After loss, use slow start to regain
ack pacing
−  switch to linear increase at last

successful rate
−  “congestion avoidance”

1

2
3

4
5

1

1

1

1
1

2

5
Ti

m
eo

ut

Putting It All Together

Timeouts dominate performance!

Fast Retransmit

Can we detect packet loss without a
timeout?
−  Receiver will reply to each packet with

an ack for last byte received in order
Duplicate acks imply either

−  packet reordering (route change)
−  packet loss

TCP Tahoe
−  resend if sender gets three duplicate

acks, without waiting for timeout

1

2
3

4
5

1

1

1

1
1

2

5

Fast Retransmit Caveats

Assumes in order packet delivery
−  Recent proposal: measure rate of out of order

delivery; dynamically adjust number of dup acks
needed for retransmit

Doesn’t work with small windows (e.g. modems)
−  what if window size <= 3

Doesn’t work if many packets are lost
−  example: at peak of slow start, might lose many

packets

Fast Retransmit

Regaining ack pacing limits performance

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

window
(in segs)

round-trip times

Slow Start + Congestion Avoidance + Fast
Retransmit

Fast Recovery

Use duplicate acks to maintain ack
pacing
−  duplicate ack => packet left network
−  after loss, send packet after every

other acknowledgement

Doesn’t work if lose many packets in a
row
−  fall back on timeout and slow start to

reestablish ack pacing

1

2
3

4
5

1

1

1

1
1

2

3

Fast Recovery

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

window
(in segs)

round-trip times

Slow Start + Congestion Avoidance + Fast
Retransmit + Fast Recovery

TCP Performance (Steady State)

Bandwidth as a function of
−  RTT?
−  Loss rate?
−  Packet size?
−  Receive window?

31

TCP over 10Gbps Pipes

What’s the problem?
How might we fix it?

32

TCP over Wireless

What’s the problem?
How might we fix it?

33

What if TCP connection is short?

Slow start dominates performance
−  What if network is unloaded?
−  Burstiness causes extra drops

Packet losses unreliable indicator for short flows
−  can lose connection setup packet
−  Can get loss when connection near done
−  Packet loss signal unrelated to sending rate

In limit, have to signal congestion (with a loss)
on every connection
−  50% loss rate as increase # of connections

Example: 100KB transfer
100Mb/s Ethernet,100ms RTT, 1.5MB MSS

Ethernet ~ 100 Mb/s
64KB window, 100ms RTT ~ 6 Mb/s
slow start (delayed acks), no losses ~ 500 Kb/s
slow start, with 5% drop ~ 200 Kb/s
Steady state, 5% drop rate ~ 750 Kb/s

Improving Short Flow Performance
Start with a larger initial window

−  RFC 3390: start with 3-4 packets
Persistent connections

−  HTTP: reuse TCP connection for multiple objects on
same page

−  Share congestion state between connections on same
host or across host

Skip slow start?
Ignore congestion signals?

Misbehaving TCP Receivers

On server side, little incentive to cheat TCP
−  Mostly competing against other flows from same

server

On client side, high incentive to induce server to
send faster
−  How?

37

