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Avoiding Small Packets 
Nagle’s algorithm (sender side): 

−  Only allow one outstanding segment smaller than the MSS 
−  A “self-clocking” algorithm 
−  But gets in the way for SSH etc. (TCP_NODELAY) 

Delayed acknowledgements (receiver side) 
−  Wait to send ACK, hoping to piggyback on reverse stream 
−  But send one ACK per two data packets and use timeout on the 

delay 
−  Cuts down on overheads and allows coalescing 
−  Otherwise a nuisance, e.g, RTT estimation 

Irony: how do Nagle and delayed ACKs interact? 
−  Consider a Web request 



Bandwidth Allocation  

How fast should a host, e.g., a web server, send 
packets? 

Two considerations: 
−  Congestion:  

•  sending too fast will cause packets to be lost in the network 

−  Fairness:  
•  different users should get their fair share of the bandwidth 

Often treated together (e.g. TCP) but needn’t be. 



Buffer absorbs bursts when input rate > output 
If sending rate is persistently > drain rate, queue builds 
Dropped packets represent wasted work 
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Power = throughput / delay 

At low load, throughput goes up 
and delay remains small 

At moderate load, delay is 
increasing (queues) but 
throughput doesn’t grow much 

At high load, much loss and delay 
increases greatly due to 
retransmissions 

Even worse, can oscillate! 
load 

Load Optimal 

Th
ro

ug
hp

ut
/d

el
ay

 

Evaluating Congestion Control 



Chapter 6, Figure 2 
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Fairness 

Each flow from a source to a destination should (?) get an 
equal share of the bottleneck link … depends on paths 
and other traffic 



Evaluating Fairness 

First, need to define what is a fair allocation.  
−  Consider n flows, each wants a fraction fi of the 

bandwidth  

Min-max fairness: 
−  First satisfy all flows evenly up to the lowest fi.. 

Repeat with the remaining bandwidth. 

Or proportional fairness 
−  Depends on path length …  f1


f2

f3


f4




Why is bandwidth allocation hard? 

Given network and traffic, just work out fair share 
and tell the sources … 

But: 
−  Demands come from many sources 
−  Needed information isn’t in the right place 
−  Demands are changing rapidly over time 
−  Information is out-of-date by the time it’s conveyed 
−  Network paths are changing over time 



Designs affect Network services 
TCP/Internet provides “best-effort” service 

−  Implicit network feedback, host controls via window. 
−  No strong notions of fairness 

A network in which there are QOS (quality of service) guarantees 
−  Rate-based reservations natural choice for some apps 
−  But reservations are need a good characterization of traffic 
−  Network involvement typically needed to provide a 

guarantee 

Former tends to be simpler to build, latter offers greater service 
to applications but is more complex. 



Case Study: TCP 

The dominant means of bandwidth allocation today 
Internet meltdowns in the late 80s (“congestion 

collapse”) led to much of its mechanism 
−  Jacobson’s slow-start, congestion avoidance [sic], fast 

retransmit and fast recovery. 

Main constraint was zero network support and de 
facto backwards-compatible upgrades to the 
sender 
−  Infer packet loss and use it as a proxy for congestion 

We will look at other models later … 



TCP Before Congestion Control 

Just use a fixed size sliding window! 
−  Will under-utilize the network or cause unnecessary 

loss 

Congestion control dynamically varies the size of 
the window to match sending and available 
bandwidth 
−  Sliding window uses minimum of cwnd, the congestion 

window, and the advertised flow control window 

The big question: how do we decide what size the 
window should be? 



TCP Congestion Control   

Goal: efficiently and fairly allocate network 
bandwidth 
−  Robust RTT estimation 
−  Additive increase/multiplicative decrease 

•  oscillate around bottleneck capacity 

−  Slow start 
•  quickly identify bottleneck capacity 

−  Fast retransmit 
−  Fast recovery 



Tracking the Bottleneck Bandwidth 

Sending rate = window size/RTT 
Multiplicative decrease 

−  Timeout => dropped packet => sending too fast => 
cut window size in half 

•  and therefore cut sending rate in half 

Additive increase 
−  Ack arrives => no drop => sending too slow => 

increase window size by one packet/window 
•  and therefore increase sending rate a little 



TCP “Sawtooth” 

Oscillates around bottleneck bandwidth 
−  adjusts to changes in competing traffic 



Two users competing for 
bandwidth: 

Consider the sequence of moves 
from AIMD, AIAD, MIMD, 
MIAD. 

Why AIMD? 



What if TCP and UDP share link? 

Independent of initial rates, UDP will get priority!  
TCP will take what’s left. 



What if two different TCP 
implementations share link? 

If cut back more slowly after drops => will grab 
bigger share 

If add more quickly after acks => will grab bigger 
share 

Incentive to cause congestion collapse! 
−  Many TCP “accelerators”  
−  Easy to improve perf at expense of network 

One solution: enforce good behavior at router 



Slow start 

How do we find bottleneck bandwidth? 
−  Start by sending a single packet 

•  start slow to avoid overwhelming network 
−  Multiplicative increase until get packet loss 

•  quickly find bottleneck 
−  Remember previous max window size 

•  shift into linear increase/multiplicative decrease when get 
close to previous max ~ bottleneck rate 

•  called “congestion avoidance” 



Slow Start 

Quickly find the bottleneck bandwidth 



TCP Mechanics Illustrated 
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Slow Start vs. Delayed Acks 

Recall that acks are delayed by 200ms to wait for 
application to provide data 

But (!) TCP congestion control triggered by acks 
−  if receive half as many acks => window grows half as 

fast 

Slow start with window = 1 
−  ack will be delayed, even though sender is waiting for 

ack to expand window 



Avoiding burstiness: ack pacing 

Sender Receiver 

bottleneck 

packets 

acks 

Window size = round trip delay * bit rate 



Ack Pacing After Timeout 

Packet loss causes timeout, 
disrupts ack pacing 
−  slow start/additive increase are 
designed to cause packet loss 

After loss, use slow start to regain 
ack pacing 
−  switch to linear increase at last 

successful rate 
−  “congestion avoidance” 
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Putting It All Together 

Timeouts dominate performance! 



Fast Retransmit 

Can we detect packet loss without a 
timeout? 
−  Receiver will reply to each packet with 

an ack for last byte received in order 
Duplicate acks imply either 

−  packet reordering (route change) 
−  packet loss 

TCP Tahoe 
−  resend if sender gets three duplicate 

acks, without waiting for timeout 
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Fast Retransmit Caveats 

Assumes in order packet delivery 
−  Recent proposal: measure rate of out of order 

delivery; dynamically adjust number of dup acks 
needed for retransmit 

Doesn’t work with small windows (e.g. modems) 
−  what if window size <= 3 

Doesn’t work if many packets are lost 
−  example: at peak of slow start, might lose many 

packets 



Fast Retransmit 

Regaining ack pacing limits performance 
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Fast Recovery 

Use duplicate acks to maintain ack 
pacing 
−  duplicate ack => packet left network 
−  after loss, send packet after every 

other acknowledgement 

Doesn’t work if lose many packets in a 
row 
−  fall back on timeout and slow start to 

reestablish ack pacing 
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Fast Recovery 
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TCP Performance (Steady State) 

Bandwidth as a function of 
−  RTT? 
−  Loss rate? 
−  Packet size? 
−  Receive window? 
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TCP over 10Gbps Pipes 

What’s the problem? 
How might we fix it? 
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TCP over Wireless 

What’s the problem? 
How might we fix it? 
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What if TCP connection is short? 

Slow start dominates performance 
−  What if network is unloaded? 
−  Burstiness causes extra drops 

Packet losses unreliable indicator for short flows 
−  can lose connection setup packet 
−  Can get loss when connection near done 
−  Packet loss signal unrelated to sending rate 

In limit, have to signal congestion (with a loss) 
on every connection 
−  50% loss rate as increase # of connections 



Example: 100KB transfer 
100Mb/s Ethernet,100ms RTT, 1.5MB MSS 

Ethernet ~ 100 Mb/s 
64KB window, 100ms RTT ~ 6 Mb/s 
slow start (delayed acks), no losses ~ 500 Kb/s 
slow start, with 5% drop ~ 200 Kb/s 
Steady state, 5% drop rate ~ 750 Kb/s 



Improving Short Flow Performance 
Start with a larger initial window 

−  RFC 3390: start with 3-4 packets 
Persistent connections 

−  HTTP: reuse TCP connection for multiple objects on 
same page 

−  Share congestion state between connections on same 
host or across host 

Skip slow start? 
Ignore congestion signals? 



Misbehaving TCP Receivers 

On server side, little incentive to cheat TCP 
−  Mostly competing against other flows from same 

server 

On client side, high incentive to induce server to 
send faster 
−  How? 
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