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Transport: Practice 

Protocols 
−  IP -- Internet protocol 
−  UDP -- user datagram protocol 
−  TCP -- transmission control protocol 
−  RPC -- remote procedure call 
−  HTTP -- hypertext transfer protocol 
−  And a bunch more… 



How do we connect processes? 

IP provides host to host packet delivery 
−  header has source, destination IP address 

For applications to communicate, need to demux 
packets sent to host to target app 
−  Web browser (HTTP), Email servers (SMTP), 

hostname translation (DNS), RealAudio player 
(RTSP), etc. 

−  Process id is OS-specific and transient  



Ports 

Port is a mailbox that processes “rent” 
−  Uniquely identify communication endpoint as           

(IP address, protocol, port) 
How do we pick port #’s? 

−  Client needs to know port # to send server a request 
−  Servers bind to “well-known” port numbers 

•  Ex: HTTP 80, SMTP 25, DNS 53, …  
•  Ports below 1024 reserved for “well-known” services 

−  Clients use OS-assigned temporary (ephemeral) 
ports 

•  Above 1024, recycled by OS when client finished 



Sockets 

OS abstraction representing communication 
endpoint 
−  Layer on top of TCP, UDP, local pipes 

server (passive open) 
−  bind -- socket to specific local port 
−  listen -- wait for client to connect 

client (active open) 
−  connect -- to specific remote port 



User Datagram Protocol (UDP) 

Provides application – application delivery 
Header has source & dest port #’s 

−  IP header provides source, dest IP addresses 

Deliver to destination port on dest machine 
Reply returns to source port on source machine 
No retransmissions, no sequence #s 
=> stateless 
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A brief Internet history... 

1970 1975 1980 1985 1990 1995 

1969 

ARPANET 

created 

1972 

TELNET 
RFC 318 

1973 

FTP 
RFC 454 

1982 

TCP & IP 
RFC 793 & 791 

1977 

MAIL 
RFC 733 

1984 

DNS 
RFC 883 

1986 

NNTP 
RFC 977 

1990 

ARPANET 

dissolved 

1991 

WWW/HTTP 

1992 

MBONE 

1995 

Multi-backbone 

Internet 



TCP: This is your life... 

1975 1980 1985 1990 

1982 

TCP & IP 
RFC 793 & 791 

1974 

TCP described by 

Vint Cerf and Bob Kahn 

In IEEE Trans Comm 

1983 

BSD Unix 4.2 

supports TCP/IP 

1984 

Nagel’s algorithm 

to reduce overhead 

of small packets; 

predicts congestion 
collapse 

1987 

Karn’s algorithm 

to better estimate 
round-trip time 

1986 

Congestion 
collapse 

observed 

1988 

Van Jacobson’s 
algorithms 

congestion avoidance 
and congestion control 

(most implemented in 
4.3BSD Tahoe) 

1990 

4.3BSD Reno 

fast retransmit 

delayed ACK’s 

1975 

Three-way handshake 

Raymond Tomlinson 

In SIGCOMM 75 



TCP: After 1990 

1993 1994 1996 

1994 

ECN 

(Floyd) 

Explicit  

Congestion 

Notification 

1993 

TCP Vegas  

(Brakmo et al) 

real congestion 
avoidance 

1994 

T/TCP 

(Braden) 

Transaction 

TCP 

1996 

SACK TCP 

(Floyd et al) 

Selective 
Acknowledgement 1996 

Hoe 

Improving TCP 
startup 

1996 

FACK TCP 

(Mathis et al) 

extension to SACK 

2006 

PCP 



Transmission Control Protocol (TCP) 
Reliable bi-directional byte stream 

−  No message boundaries 
−  Ports as application endpoints 

Sliding window, go back N/SACK, RTT est, … 
−  Highly tuned congestion control algorithm 

Flow control 
−  prevent sender from overrunning receiver buffers 

Connection setup 
−  negotiate buffer sizes and initial seq #s 
−  Needs to work between all types of computers 

(supercomputer -> 8086) 



TCP Packet Header 

Source, destination ports 
Sequence # (bytes being 

sent) 
Ack # (next byte 

expected) 
Receive window size 
Checksum 
Flags: SYN, FIN, RST 



TCP Delivery 

Application process 

W rite 
bytes 

TCP 
Send buffer 

Segment Segment Segment 
Transmit segments 

Application process 

Read 
bytes 

TCP 
Receive buffer 

… 
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TCP Sliding Window 

Per-byte, not per-packet (why?) 
−  send packet says “here are bytes j-k” 
−  ack says “received up to byte k” 

Send buffer >= send window  
−  can buffer writes in kernel before sending 
−  writer blocks if try to write past send buffer 

Receive buffer >= receive window 
−  buffer acked data in kernel, wait for reads 
−  reader blocks if try to read past acked data 



Visualizing the window 
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offered window 

(advertised by receiver) 
usable window 

sent and 

acknowledged sent, not ACKed 

can send ASAP 
can’t send until 

window moves 

Left side of window advances when data is acknowledged. 

Right side controlled by size of window advertisement 



Flow Control 

What if sender process is faster than receiver 
process? 
−  Data builds up in receive window 
−  if data is acked, sender will send more! 
−  If data is not acked, sender will retransmit! 

Sender must transmit data no faster than it can be 
consumed by the receiver 
−  Receiver might be a slow machine 
−  App might consume data slowly 

Sender sliding window <= free receiver buffer 
−  Advertised window = # of free bytes; if zero, stop 



Sending application 

LastByteWritten 

TCP 

LastByteSent LastByteAcked 

Receiving application 

LastByteRead 

TCP 

LastByteRcvd NextByteExpected 

Sender and Receiver Buffering 

= available buffer = buffer in use 



Example – Exchange of Packets 

SEQ=1 

SEQ=2 

SEQ=3 
SEQ=4 

ACK=2; WIN=3 

ACK=3; WIN=2 

ACK=4; WIN=1 

ACK=5; WIN=0 

Receiver has buffer of 
size 4 and application 
doesn’t read 

Stall due to 
flow control 
here 

T=1 

T=2 

T=3 

T=4 

T=5 

T=6 



Example – Buffer at Sender 

2 1 3 4 5 6 7 8 9 

2 1 3 4 5 6 7 8 9 

2 1 3 4 5 6 7 8 9 

2 1 3 4 5 6 7 8 9 

2 1 3 4 5 6 7 8 9 

2 1 3 4 5 6 7 8 9 

T=1 

T=2 

T=3 

T=4 

T=5 

T=6 

=acked 

=sent 

=advertised 



How does sender know when to 
resume sending? 

If receive window = 0, sender stops 
−  no data => no acks => no window updates 

Sender periodically pings receiver with one byte 
packet 
−  receiver acks with current window size 

Why not have receiver ping sender? 



Should sender be greedy (I)? 

Should sender transmit as soon as any space 
opens in receive window? 
−  Silly window syndrome 

•  receive window opens a few bytes 
•  sender transmits little packet 
•  receive window closes 

Solution (Clark, 1982): sender doesn’t resume 
sending until window is half open 



Should sender be greedy (II)? 
App writes a few bytes; send a packet? 

−  Don’t want to send a packet for every keystroke 
−  If buffered writes >= max segment size 
−  if app says “push” (ex: telnet, on carriage return) 
−  after timeout (ex: 0.5 sec) 

Nagle’s algorithm 
−  Never send two partial segments; wait for first to be 

acked, before sending next 
−  Self-adaptive: can send lots of tinygrams if network is 

being responsive 
But (!) poor interaction with delayed acks (later) 



TCP Connection Management 
Setup 

−  assymetric 3-way handshake 
Transfer 

−  sliding window; data and acks in both directions 
Teardown 

−  symmetric 2-way handshake 
Client-server model 

−  initiator (client) contacts server 
−  listener (server) responds, provides service 



Three-Way Handshake 

Opens both directions for transfer 

Active participant 
(client) 

Passive participant 
(server) 

SYN, SequenceNum =  x 

SYN + ACK, SequenceNum =  y , 

ACK, Acknowledgment =  y  +  1 

Acknowledgment =  x  +  1 

+data 



Do we need 3-way handshake? 

Allows both sides to 
−  allocate state for buffer size, state variables, … 
−  calculate estimated RTT, estimated MTU, etc. 

Helps prevent 
−  Duplicates across incarnations 
−  Intentional hijacking 

•  random nonces => weak form of authentication 

Short-circuit? 
−  Persistent connections in HTTP (keep connection open) 
−  Transactional TCP (save seq #, reuse on reopen) 
−  But congestion control effects dominate 



TCP Transfer 

Connection is bi-directional 
−  acks can carry response data 

(client) (server) 
Seq = x + MSS; Ack  = y+1 

Seq = y+MSS; Ack = x+2MSS+1 

Seq = x + 2*MSS; Ack = y+1 

Seq = x + 3*MSS; Ack = y+MSS+1 



TCP Connection Teardown 

Symmetric: either side can close connection (or RST!) 
Web server Web browser 

FIN 

ACK 

data, ACK  

FIN  
data, ACK  

ACK 

Half-open connection; data 
can be continue to be sent 

Can reclaim connection  right away 
(must be at least 1MSL after first FIN) 

Can reclaim connection  
after 2 MSL 



CLOSED 

LISTEN 

SYN_RCVD SYN_SENT 

ESTABLISHED 

CLOSE_WAIT 

LAST_ACK CLOSING 

TIME_WAIT 

FIN_WAIT_2 

FIN_WAIT_1 

Passive open Close 

Send/ SYN 
SYN/SYN + ACK 

SYN + ACK/ACK 

SYN/SYN + ACK 

ACK 

Close /FIN 

FIN/ACK Close /FIN 

FIN/ACK 

Timeout after two  
segment lifetimes FIN/ACK 

ACK 

ACK 

ACK 

Close /FIN 

Close 

CLOSED 

Active open /SYN 

TCP State Transitions 



TCP Connection Setup, with States 

Active participant 
(client) 

Passive participant 
(server) 

SYN, SequenceNum =  x 

SYN + ACK, SequenceNum =  y , 

ACK, Acknowledgment =  y  +  1 

Acknowledgment =  x  +  1 

+data 

LISTEN 

SYN_RCVD 

SYN_SENT 

ESTABLISHED 

ESTABLISHED 



TCP Connection Teardown 

Web server Web browser 

FIN 

ACK 

ACK  

FIN  

FIN_WAIT_1 

CLOSE_WAIT 

LAST_ACK 

FIN_WAIT_2 

TIME_WAIT 

CLOSED 
CLOSED 

… 



The TIME_WAIT State 
We wait 2MSL (two times the maximum segment 

lifetime of 60 seconds) before completing the 
close 

Why? 

ACK might have been lost and so FIN will be resent 
Could interfere with a subsequent connection 



TCP Handshake in an 
Uncooperative Internet 

TCP Hijacking 
−  if seq # is predictable, 

attacker can insert packets 
into TCP stream 

−  many implementations of 
TCP simply bumped 
previous seq # by 1 

−  attacker can learn seq # by 
setting up a connection 

Solution: use random 
initial sequence #’s 
−  weak form of 

authentication  

Malicious attacker 
Server 

SYN, SequenceNum =  x 

SYN + ACK, y, x + 1 

Client 

“HTTP get URL”, x + MSS 

web page, y + MSS 

ACK, y+1 

fake web page, y+MSS 



TCP Handshake in an 
Uncooperative Internet 

TCP SYN flood 
−  server maintains state 

for every open 
connection 

−  if attacker spoofs source 
addresses, can cause 
server to open lots of 
connections 

−  eventually, server runs 
out of memory 

Malicious attacker Server 
SYN, SequenceNum =  x 

SYN + ACK, y, x + 1 

SYN, p  SYN, q SYN, r SYN, s 



TCP SYN cookies 

Solution: SYN cookies 
−  Server keeps no state in 

response to SYN; instead 
makes client store state 

−  Server picks return seq # y 
= © that encrypts x 

−  Gets © +1 from sender; 
unpacks to yield x 

Can data arrive before ACK? 

Client Server 
SYN, SequenceNum =  x 

SYN + ACK, ©, x + 1 

ACK, © + 1 



How can TCP choose segment size? 

Pick LAN MTU as segment size? 
−  LAN MTU can be larger than WAN MTU  
−  E.g., Gigabit Ethernet jumbo frames 

Pick smallest MTU across all networks in 
Internet? 
−  Most traffic is local! 

•  Local file server, web proxy, DNS cache, ... 

−  Increases packet processing overhead 
Discover MTU to each destination? (IP DF bit) 
Guess? 



Layering Revisited 
IP layer “transparent” packet delivery 

−  Implementation decisions affect higher layers (and 
vice versa) 

•  Fragmentation => reassembly overhead 
– path MTU discovery 

•  Packet loss => congestion or lossy link? 
–  link layer retransmission 

•  Reordering => packet loss or multipath? 
– router hardware tries to keep packets in order 

•  FIFO vs. active queue management 



IP Packet Header Limitations 

Fixed size fields in IPv4 packet header 
−  source/destination address (32 bits) 

•  limits to ~ 4B unique public addresses; about 600M allocated 
•  NATs map multiple hosts to single public address 

−  IP ID field (16 bits) 
•  limits to 65K fragmented packets at once => 100MB in flight? 
•  in practice, fewer than 1% of all packets fragment 

−  Type of service (8 bits) 
•  unused until recently; used to express priorities 

−  TTL (8 bits) 
•  limits max Internet path length to 255; typical max is 30 

−  Length (16 bits) 
•  Much larger than most link layer MTU’s 



TCP Packet Header Limitations 

Fixed size fields in TCP packet header 
−  seq #/ack # -- 32 bits (can’t wrap within MSL) 

•  T1 ~ 6.4 hours; OC-192 ~ 3.5 seconds 
−  source/destination port # -- 16 bits 

•  limits # of connections between two machines (NATs) 
•  ok to give each machine multiple IP addresses 

−  header length 
•  limits # of options 

−  receive window size -- 16 bits (64KB) 
•  rate = window size / delay 
•  Ex: 100ms delay => rate ~ 5Mb/sec 
•  RFC 1323: receive window scaling 
•  Defaults still a performance problem 



HTTP on TCP 

How do we reduce the # of 
messages? 

Delayed ack: wait for 200ms for 
reply or another pkt arrival 

TCP RST from web server 

SYN 

SYN+ACK 

ACK 

http get 

ACK 

http data 

ACK 

FIN 

ACK 

FIN 

ACK 


