
CSE 461: TCP (part 2)

Ben Greenstein
Jeremy Elson

TA: Ivan Beschastnikh

Thanks to Tom Anderson and Ratul Mahajan for slides

Transport: Practice

Protocols
−  IP -- Internet protocol
−  UDP -- user datagram protocol
−  TCP -- transmission control protocol
−  RPC -- remote procedure call
−  HTTP -- hypertext transfer protocol
−  And a bunch more…

How do we connect processes?

IP provides host to host packet delivery
−  header has source, destination IP address

For applications to communicate, need to demux
packets sent to host to target app
−  Web browser (HTTP), Email servers (SMTP),

hostname translation (DNS), RealAudio player
(RTSP), etc.

−  Process id is OS-specific and transient

Ports

Port is a mailbox that processes “rent”
−  Uniquely identify communication endpoint as

(IP address, protocol, port)
How do we pick port #’s?

−  Client needs to know port # to send server a request
−  Servers bind to “well-known” port numbers

•  Ex: HTTP 80, SMTP 25, DNS 53, …
•  Ports below 1024 reserved for “well-known” services

−  Clients use OS-assigned temporary (ephemeral)
ports

•  Above 1024, recycled by OS when client finished

Sockets

OS abstraction representing communication
endpoint
−  Layer on top of TCP, UDP, local pipes

server (passive open)
−  bind -- socket to specific local port
−  listen -- wait for client to connect

client (active open)
−  connect -- to specific remote port

User Datagram Protocol (UDP)

Provides application – application delivery
Header has source & dest port #’s

−  IP header provides source, dest IP addresses

Deliver to destination port on dest machine
Reply returns to source port on source machine
No retransmissions, no sequence #s
=> stateless

Application
process

Application
process

Application
process

Packets arrive

Ports

Message

Queues

DeMux

UDP Delivery

Kernel

boundary

A brief Internet history...

1970 1975 1980 1985 1990 1995

1969

ARPANET

created

1972

TELNET
RFC 318

1973

FTP
RFC 454

1982

TCP & IP
RFC 793 & 791

1977

MAIL
RFC 733

1984

DNS
RFC 883

1986

NNTP
RFC 977

1990

ARPANET

dissolved

1991

WWW/HTTP

1992

MBONE

1995

Multi-backbone

Internet

TCP: This is your life...

1975 1980 1985 1990

1982

TCP & IP
RFC 793 & 791

1974

TCP described by

Vint Cerf and Bob Kahn

In IEEE Trans Comm

1983

BSD Unix 4.2

supports TCP/IP

1984

Nagel’s algorithm

to reduce overhead

of small packets;

predicts congestion
collapse

1987

Karn’s algorithm

to better estimate
round-trip time

1986

Congestion
collapse

observed

1988

Van Jacobson’s
algorithms

congestion avoidance
and congestion control

(most implemented in
4.3BSD Tahoe)

1990

4.3BSD Reno

fast retransmit

delayed ACK’s

1975

Three-way handshake

Raymond Tomlinson

In SIGCOMM 75

TCP: After 1990

1993 1994 1996

1994

ECN

(Floyd)

Explicit

Congestion

Notification

1993

TCP Vegas

(Brakmo et al)

real congestion
avoidance

1994

T/TCP

(Braden)

Transaction

TCP

1996

SACK TCP

(Floyd et al)

Selective
Acknowledgement 1996

Hoe

Improving TCP
startup

1996

FACK TCP

(Mathis et al)

extension to SACK

2006

PCP

Transmission Control Protocol (TCP)
Reliable bi-directional byte stream

−  No message boundaries
−  Ports as application endpoints

Sliding window, go back N/SACK, RTT est, …
−  Highly tuned congestion control algorithm

Flow control
−  prevent sender from overrunning receiver buffers

Connection setup
−  negotiate buffer sizes and initial seq #s
−  Needs to work between all types of computers

(supercomputer -> 8086)

TCP Packet Header

Source, destination ports
Sequence # (bytes being

sent)
Ack # (next byte

expected)
Receive window size
Checksum
Flags: SYN, FIN, RST

TCP Delivery

Application process

W rite
bytes

TCP
Send buffer

Segment Segment Segment
Transmit segments

Application process

Read
bytes

TCP
Receive buffer

…

…

…

IP x.html IP TCP get inde

TCP Sliding Window

Per-byte, not per-packet (why?)
−  send packet says “here are bytes j-k”
−  ack says “received up to byte k”

Send buffer >= send window
−  can buffer writes in kernel before sending
−  writer blocks if try to write past send buffer

Receive buffer >= receive window
−  buffer acked data in kernel, wait for reads
−  reader blocks if try to read past acked data

Visualizing the window

4 5 6 7 8 9 1 2 3 10 11 12

offered window

(advertised by receiver)
usable window

sent and

acknowledged sent, not ACKed

can send ASAP
can’t send until

window moves

Left side of window advances when data is acknowledged.

Right side controlled by size of window advertisement

Flow Control

What if sender process is faster than receiver
process?
−  Data builds up in receive window
−  if data is acked, sender will send more!
−  If data is not acked, sender will retransmit!

Sender must transmit data no faster than it can be
consumed by the receiver
−  Receiver might be a slow machine
−  App might consume data slowly

Sender sliding window <= free receiver buffer
−  Advertised window = # of free bytes; if zero, stop

Sending application

LastByteWritten

TCP

LastByteSent LastByteAcked

Receiving application

LastByteRead

TCP

LastByteRcvd NextByteExpected

Sender and Receiver Buffering

= available buffer = buffer in use

Example – Exchange of Packets

SEQ=1

SEQ=2

SEQ=3
SEQ=4

ACK=2; WIN=3

ACK=3; WIN=2

ACK=4; WIN=1

ACK=5; WIN=0

Receiver has buffer of
size 4 and application
doesn’t read

Stall due to
flow control
here

T=1

T=2

T=3

T=4

T=5

T=6

Example – Buffer at Sender

2 1 3 4 5 6 7 8 9

2 1 3 4 5 6 7 8 9

2 1 3 4 5 6 7 8 9

2 1 3 4 5 6 7 8 9

2 1 3 4 5 6 7 8 9

2 1 3 4 5 6 7 8 9

T=1

T=2

T=3

T=4

T=5

T=6

=acked

=sent

=advertised

How does sender know when to
resume sending?

If receive window = 0, sender stops
−  no data => no acks => no window updates

Sender periodically pings receiver with one byte
packet
−  receiver acks with current window size

Why not have receiver ping sender?

Should sender be greedy (I)?

Should sender transmit as soon as any space
opens in receive window?
−  Silly window syndrome

•  receive window opens a few bytes
•  sender transmits little packet
•  receive window closes

Solution (Clark, 1982): sender doesn’t resume
sending until window is half open

Should sender be greedy (II)?
App writes a few bytes; send a packet?

−  Don’t want to send a packet for every keystroke
−  If buffered writes >= max segment size
−  if app says “push” (ex: telnet, on carriage return)
−  after timeout (ex: 0.5 sec)

Nagle’s algorithm
−  Never send two partial segments; wait for first to be

acked, before sending next
−  Self-adaptive: can send lots of tinygrams if network is

being responsive
But (!) poor interaction with delayed acks (later)

TCP Connection Management
Setup

−  assymetric 3-way handshake
Transfer

−  sliding window; data and acks in both directions
Teardown

−  symmetric 2-way handshake
Client-server model

−  initiator (client) contacts server
−  listener (server) responds, provides service

Three-Way Handshake

Opens both directions for transfer

Active participant
(client)

Passive participant
(server)

SYN, SequenceNum = x

SYN + ACK, SequenceNum = y ,

ACK, Acknowledgment = y + 1

Acknowledgment = x + 1

+data

Do we need 3-way handshake?

Allows both sides to
−  allocate state for buffer size, state variables, …
−  calculate estimated RTT, estimated MTU, etc.

Helps prevent
−  Duplicates across incarnations
−  Intentional hijacking

•  random nonces => weak form of authentication

Short-circuit?
−  Persistent connections in HTTP (keep connection open)
−  Transactional TCP (save seq #, reuse on reopen)
−  But congestion control effects dominate

TCP Transfer

Connection is bi-directional
−  acks can carry response data

(client) (server)
Seq = x + MSS; Ack = y+1

Seq = y+MSS; Ack = x+2MSS+1

Seq = x + 2*MSS; Ack = y+1

Seq = x + 3*MSS; Ack = y+MSS+1

TCP Connection Teardown

Symmetric: either side can close connection (or RST!)
Web server Web browser

FIN

ACK

data, ACK

FIN
data, ACK

ACK

Half-open connection; data
can be continue to be sent

Can reclaim connection right away
(must be at least 1MSL after first FIN)

Can reclaim connection
after 2 MSL

CLOSED

LISTEN

SYN_RCVD SYN_SENT

ESTABLISHED

CLOSE_WAIT

LAST_ACK CLOSING

TIME_WAIT

FIN_WAIT_2

FIN_WAIT_1

Passive open Close

Send/ SYN
SYN/SYN + ACK

SYN + ACK/ACK

SYN/SYN + ACK

ACK

Close /FIN

FIN/ACK Close /FIN

FIN/ACK

Timeout after two
segment lifetimes FIN/ACK

ACK

ACK

ACK

Close /FIN

Close

CLOSED

Active open /SYN

TCP State Transitions

TCP Connection Setup, with States

Active participant
(client)

Passive participant
(server)

SYN, SequenceNum = x

SYN + ACK, SequenceNum = y ,

ACK, Acknowledgment = y + 1

Acknowledgment = x + 1

+data

LISTEN

SYN_RCVD

SYN_SENT

ESTABLISHED

ESTABLISHED

TCP Connection Teardown

Web server Web browser

FIN

ACK

ACK

FIN

FIN_WAIT_1

CLOSE_WAIT

LAST_ACK

FIN_WAIT_2

TIME_WAIT

CLOSED
CLOSED

…

The TIME_WAIT State
We wait 2MSL (two times the maximum segment

lifetime of 60 seconds) before completing the
close

Why?

ACK might have been lost and so FIN will be resent
Could interfere with a subsequent connection

TCP Handshake in an
Uncooperative Internet

TCP Hijacking
−  if seq # is predictable,

attacker can insert packets
into TCP stream

−  many implementations of
TCP simply bumped
previous seq # by 1

−  attacker can learn seq # by
setting up a connection

Solution: use random
initial sequence #’s
−  weak form of

authentication

Malicious attacker
Server

SYN, SequenceNum = x

SYN + ACK, y, x + 1

Client

“HTTP get URL”, x + MSS

web page, y + MSS

ACK, y+1

fake web page, y+MSS

TCP Handshake in an
Uncooperative Internet

TCP SYN flood
−  server maintains state

for every open
connection

−  if attacker spoofs source
addresses, can cause
server to open lots of
connections

−  eventually, server runs
out of memory

Malicious attacker Server
SYN, SequenceNum = x

SYN + ACK, y, x + 1

SYN, p SYN, q SYN, r SYN, s

TCP SYN cookies

Solution: SYN cookies
−  Server keeps no state in

response to SYN; instead
makes client store state

−  Server picks return seq # y
= © that encrypts x

−  Gets © +1 from sender;
unpacks to yield x

Can data arrive before ACK?

Client Server
SYN, SequenceNum = x

SYN + ACK, ©, x + 1

ACK, © + 1

How can TCP choose segment size?

Pick LAN MTU as segment size?
−  LAN MTU can be larger than WAN MTU
−  E.g., Gigabit Ethernet jumbo frames

Pick smallest MTU across all networks in
Internet?
−  Most traffic is local!

•  Local file server, web proxy, DNS cache, ...

−  Increases packet processing overhead
Discover MTU to each destination? (IP DF bit)
Guess?

Layering Revisited
IP layer “transparent” packet delivery

−  Implementation decisions affect higher layers (and
vice versa)

•  Fragmentation => reassembly overhead
– path MTU discovery

•  Packet loss => congestion or lossy link?
–  link layer retransmission

•  Reordering => packet loss or multipath?
– router hardware tries to keep packets in order

•  FIFO vs. active queue management

IP Packet Header Limitations

Fixed size fields in IPv4 packet header
−  source/destination address (32 bits)

•  limits to ~ 4B unique public addresses; about 600M allocated
•  NATs map multiple hosts to single public address

−  IP ID field (16 bits)
•  limits to 65K fragmented packets at once => 100MB in flight?
•  in practice, fewer than 1% of all packets fragment

−  Type of service (8 bits)
•  unused until recently; used to express priorities

−  TTL (8 bits)
•  limits max Internet path length to 255; typical max is 30

−  Length (16 bits)
•  Much larger than most link layer MTU’s

TCP Packet Header Limitations

Fixed size fields in TCP packet header
−  seq #/ack # -- 32 bits (can’t wrap within MSL)

•  T1 ~ 6.4 hours; OC-192 ~ 3.5 seconds
−  source/destination port # -- 16 bits

•  limits # of connections between two machines (NATs)
•  ok to give each machine multiple IP addresses

−  header length
•  limits # of options

−  receive window size -- 16 bits (64KB)
•  rate = window size / delay
•  Ex: 100ms delay => rate ~ 5Mb/sec
•  RFC 1323: receive window scaling
•  Defaults still a performance problem

HTTP on TCP

How do we reduce the # of
messages?

Delayed ack: wait for 200ms for
reply or another pkt arrival

TCP RST from web server

SYN

SYN+ACK

ACK

http get

ACK

http data

ACK

FIN

ACK

FIN

ACK

