
CSE 461: TCP (part 1)

Ben Greenstein

Jeremy Elson

TA: Ivan Beschastnikh

Thanks to Tom Anderson and Ratul Mahajan for slides

Administrivia

Homework #3
−  Optional, but at least 1-2 of these problems will serve

as a model for a midterm exam question:
Ch. 3: 15, 19. Ch. 4: 3, 10, 12, 13, 22

Midterm is on Wednesday, November 5
−  HW1 and HW2 and Project 1 returned by Friday
−  Covers all lectures and related text up to and

including 4.2
−  Today’s and Monday’s lectures will be on Final
−  Short midterm review on Monday

Project 2, part 2 due Friday, November 7

2

General’s Paradox

Can we use messages and retries to synchronize
two machines so they are guaranteed to do some
operation at the same time?
−  No. Why?

General’s Paradox Illustrated

A B

3:30 ok?

ok, 3:30 is good for me

so, its 3:30?

yeah, but what if you

 don’t get this ack?

Consensus revisited

If distributed consensus is impossible, what then?

TCP can agree that destination received data

5

Transport Challenge

IP: routers can be arbitrarily bad
−  packets can be lost, reordered, duplicated, have

limited size & can be fragmented

TCP: applications need something better
−  Reliable delivery, in order delivery, no duplicates,

arbitrarily long streams of data, match sender/
receiver speed, process-to-process

Reliable Transmission

How do we send packets reliably?

Two mechanisms
−  Acknowledgements
−  Timeouts

Simplest reliable protocol: Stop and Wait

Stop and Wait

Time

Packet

ACK Ti
m

eo
ut

 Send a packet, wait until ack arrives
 retransmit if no ack within timeout

 Receiver acks each packet as it arrives

Sender Receiver

Recovering from error

Packet

Ti
m

eo
ut

Packet

ACK Ti
m

eo
ut

Packet

Ti
m

eo
ut

Packet

ACK Ti
m

eo
ut

Time

Packet

ACK

Ti
m

eo
ut

Packet

ACK Ti
m

eo
ut

ACK lost Packet lost Early timeout

How can we recognize resends?

Use unique ID for each pkt
−  for both packets and acks

How many bits for the ID?
−  For stop and wait, a single bit!
−  assuming in-order delivery…

Pkt 0

Pkt 0

ACK 1

Pkt 1

ACK 0

What if packets can be delayed?

Solutions?
−  Never reuse an ID?
−  Change IP layer to eliminate

packet reordering?
−  Prevent very late delivery?

•  IP routers keep hop count per pkt,
discard if exceeded

•  ID’s not reused within delay bound

−  TCP won’t work without some
bound on how late packets can
arrive!

0

0

 1

1

 0

0
Accept!

Reject!

What happens on reboot?

How do we distinguish packets sent before and
after reboot?
−  Can’t remember last sequence # used unless written

to stable storage (disk or NVRAM)

Solutions?
−  Restart sequence # at 0?
−  Assume/force boot to take max packet delay?
−  Include epoch number in packet (stored on disk)?
−  Ask other side what the last sequence # was?

−  TCP sidesteps this problem with random initial seq #
(in each direction)

How do we keep the pipe full?

Unless the bandwidth*delay product
is small, stop and wait can’t fill pipe

Solution: Send multiple packets
without waiting for first to be acked

Reliable, unordered delivery:
−  Send new packet after each ack
−  Sender keeps list of unack’ed packets;

resends after timeout
−  Receiver same as stop&wait

How easy is it to write apps that
handle out of order delivery?
−  How easy is it to test those apps?

Sliding Window: Reliable, ordered
delivery

Two constraints:
−  Receiver can’t deliver packet to application until all

prior packets have arrived
−  Sender must prevent buffer overflow at receiver

Solution: sliding window
−  circular buffer at sender and receiver

•  packets in transit <= buffer size
•  advance when sender and receiver agree packets at beginning

have been received

−  How big should the window be?
•  bandwidth * round trip delay

Sender/Receiver State

sender
−  packets sent and acked (LAR = last ack recvd)
−  packets sent but not yet acked
−  packets not yet sent (LFS = last frame sent)

receiver
−  packets received and acked (NFE = next frame

expected)
−  packets received out of order
−  packets not yet received (LFA = last frame ok)

Sliding Window

LAR LFS

Send Window

sent

acked

0 1 2

x x
x

x x x x x

3 4 5 6

NFE LFA

Receive Window

recvd

acked

0 1 2

x x
x

x x x x

3 4 5 6

x

What if we lose a packet?

Go back N (original TCP)
−  receiver acks “got up through k” (“cumulative ack”)
−  ok for receiver to buffer out of order packets
−  on timeout, sender restarts from k+1

Selective retransmission (RFC 2018)
−  receiver sends ack for each pkt in window
−  on timeout, resend only missing packet

Can we shortcut timeout?

If packets usually arrive in order, out of order
delivery is (probably) a packet loss
−  Negative ack

•  receiver requests missing packet

−  Fast retransmit (TCP)
•  receiver acks with NFE-1 (or selective ack)
•  if sender gets acks that don’t advance NFE, resends missing

packet

Sender Algorithm

Send full window, set timeout
On receiving an ack:

if it increases LAR (last ack received)
 send next packet(s)

-- no more than window size outstanding at once

else (already received this ack)
if receive multiple acks for LAR, next packet may have been

lost; retransmit LAR + 1 (and more if selective ack)

On timeout:
resend LAR + 1 (first packet not yet acked)

Receiver Algorithm
On packet arrival:

if packet is the NFE (next frame expected)
 send ack
 increase NFE
 hand any packet(s) below NFE to application
else if < NFE (packet already seen and acked)
 send ack and discard // Q: why is ack needed?
else (packet is > NFE, arrived out of order)
 buffer and send ack for NFE – 1

 -- signal sender that NFE might have been lost
 -- and with selective ack: which packets correctly arrived

What if link is very lossy?

Wireless packet loss rates can be 10-30%
−  end to end retransmission will still work
−  will be inefficient, especially with go back N

Solution: hop by hop retransmission
−  performance optimization, not for correctness

End to end principle
−  ok to do optimizations at lower layer
−  still need end to end retransmission; why?

Avoiding burstiness: ack pacing

Sender Receiver

bottleneck

packets

acks

Window size = round trip delay * bit rate

How many sequence #’s?

Window size + 1?
−  Suppose window size = 3
−  Sequence space: 0 1 2 3 0 1 2 3
−  send 0 1 2, all arrive

•  if acks are lost, resend 0 1 2
•  if acks arrive, send new 3 0 1

Window <= (max seq # + 1) / 2

How do we determine timeouts?
If timeout too small, useless retransmits

−  can lead to congestion collapse (and did in 86)
−  as load increases, longer delays, more timeouts, more

retransmissions, more load, longer delays, more
timeouts …

−  Dynamic instability!
If timeout too big, inefficient

−  wait too long to send missing packet
Timeout should be based on actual round trip time

(RTT)
−  varies with destination subnet, routing changes,

congestion, …

Estimating RTTs

Idea: Adapt based on recent past measurements
−  For each packet, note time sent and time ack received
−  Compute RTT samples and average recent samples for

timeout
−  EstimatedRTT = α x EstimatedRTT + (1 - α) x

SampleRTT

−  This is an exponentially-weighted moving average (low
pass filter) that smoothes the samples. Typically,
α = 0.8 to 0.9.

−  Set timeout to small multiple (2) of the estimate

Estimated Retransmit Timer

Retransmission ambiguity

How do we distinguish first ack
from retransmitted ack?
−  First send to first ack?

•  What if ack dropped?

−  Last send to last ack?
•  What if last ack dropped?

Might never be able to fix too short
a timeout!

Timeout!

Retransmission ambiguity:
Solutions?

TCP: Karn-Partridge
−  ignore RTT estimates for retransmitted pkts
−  double timeout on every retransmission

Add sequence #’s to retransmissions (retry #1,
retry #2, …)

Modern TCP (RFC 1323): Add timestamp into
packet header; ack returns timestamp

Jacobson/Karels Algorithm

Problem:
−  Variance in RTTs gets large as network gets loaded
−  Average RTT isn’t a good predictor when we need it

most
Solution: Track variance too.

−  Difference = SampleRTT – EstimatedRTT
−  EstimatedRTT = EstimatedRTT + (δ x Difference)
−  Deviation = Deviation + δ(|Difference|- Deviation)
−  Timeout = µ x EstimatedRTT + φ x Deviation
−  In practice, δ = 1/8, µ = 1 and φ = 4

Estimate with Mean + Variance

