
CSE 461: Link State Routing



Link State Routing

 Same assumptions/goals, but different idea than DV:

 Make sure all routers have a view of the global 
topology

 Have them all independently compute the best 
routes
• Note our good old “same input + same algorithm 

consistent output” trick

 Two phases:
1. Topology dissemination (flooding)

- New News travels fast.  

- Old News should eventually be forgotten

2. Shortest-path calculation (Dijkstra’s algorithm)

- N log(n)



 Each router monitors state of its directly connected links

 Periodically, send this information to your neighbors

 Generate a link state packet

 Contains router ID, link list, sequence number, time-to-live

 Store and forward LSPs received – if (ID, seqno) is more recent

 Remember this packet for routing calculations

 Forward LSP to all ports other than incoming ports

 This produces a flood; each LSP will travel over the same link at 
most once in each direction

 Flooding is fast, and can be made reliable with acknowledgments

Flooding



Example

LSP generated by X at T=0
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Will B transmit this LSP to C or A?  Why or why not?



Flooding Sequence Numbers

 Use nonces instead of sequence numbers?  (i.e., accept 
any LSP with a nonce not equal to the one stored)

 Why is this a bad idea?

 Just make the space really big (e.g., 128-bit)?

 What happens if we accidentally emit an n-1 seqno?

 Allow the sequence number space to wrap around?

How do we keep the sequence number space 

From being exhausted?
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ARPANet failed in 1981, because…
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A dying router 

emitted 3 LSPs with 

3 very unlucky 

sequence numbers.  

Soon, the entire 

network was doing 

nothing but 

propagating these 

same three LSPs 

everywhere.



Other Complications

 When link/router fails need to remove old data. How?

 LSPs carry sequence numbers to determine new data

 Send a new LSP with cost infinity to signal a link 
down

 What happens if the network is partitioned and heals?

 Different LS databases must be synchronized

 Inconsistent data across routers  loops



Shortest Paths: Dijkstra’s Algorithm

 N: Set of all nodes

 M: Set of nodes for which we think we have a shortest 
path

 s: The node executing the algorithm

 L(i,j): cost of edge (i,j) (inf if no edge connects)

 C(i): Cost of the path from s to i.

 Two phases:

 Initialize C(n) according to received link states

 Compute shortest path to all nodes from s
• Link costs are symmetric



The Algorithm

// Initialization

M = {s}   // M is the set of all nodes considered so far.

For each n in N - {s}

C(n) = L(s,n)

// Find Shortest paths

Forever {

Unconsidered = N-M

If Unconsidered == {} break    

M = M + {w} such that C(w) is the smallest in Unconsidered

For each n in Unconsidered

C(n) = MIN(C(n), C(w) + L(w,n))

}



Open Shortest Path First (OSPF)

 Most widely-used Link State implementation today

 Basic link state algorithms plus many features:

 Authentication of routing messages

 Extra hierarchy: partition into routing areas
• Only bordering routers send link state information to another 

area

• Reduces chatter.

• Border router “summarizes” network costs within an area by 
making it appear as though it is directly connected to all 
interior routers

 Load balancing



Distance Vector Message Complexity

N: number of nodes in the system

M: number of links

D: diameter of network (longest shortest path)

Da: Average degree of a node (# of outgoing links)

 Size of each update: 

 Number of updates sent in one iteration: 

 Number of iterations for convergence: 

 Total message cost: 

 Number of messages: 

 Incremental cost per iteration:



Link State Message Complexity

N: number of nodes in the system

M: number of links

D: diameter of network (longest shortest path)

Da: Average degree of a node (# of outgoing links)

 Size of each update: 

 Number of updates sent in one iteration: 

 Number of iterations for convergence: 

 Total message cost: 

 Number of messages: 

 Incremental cost per iteration:



Distance Vector vs. Link State

 When would you choose one over the other?

 Be warned when reading about this on the Internet: 
people rate implementations, not fundamentals

 Bandwidth consumed

 Memory used

 Computation required

 Robustness

 Functionality

 Global view of network vs. local?

 Troubleshooting?

 Speed of convergence



Why have two protocols?

 DV: “Tell your neighbors about the world.”

 Easy to get confused

 Simple but limited, costly and slow
• Number of hops might be limited

• Periodic broadcasts of large tables

• Slow convergence due to ripples and hold down

 LS: “Tell the world about your neighbors.”

 Harder to get confused

 More expensive sometimes
• As many hops as you want

• Faster convergence (instantaneous update of link state changes)

• Able to impose global policies in a globally consistent way

– load balancing



Cost Metrics

 How should we choose cost?

 To get high bandwidth, low delay or low loss?

 Do they depend on the load?

 Static Metrics

 Hopcount is easy but treats OC3 (155 Mbps) and T1 (1.5 
Mbps)

 Can tweak result with manually assigned costs

 Dynamic Metrics

 Depend on load; try to avoid hotspots (congestion)

 But can lead to oscillations (damping needed)



 Based on load and link

 Variation limited (3:1) 
and change damped

 Capacity dominates at 
low load; we only try to 
move traffic if high load
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Key Concepts

 Routing uses global knowledge; forwarding is local

 Many different algorithms address the routing problem

 We have looked at two classes: DV (RIP) and LS 
(OSPF)

 Challenges:

 Handling failures/changes

 Defining “best” paths

 Scaling to millions of users



Dijkstra Example – After the flood
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Dijkstra Example – Post 

Initialization

* *
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Considering a Node
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Pushing out the horizon
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Next Phase
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Considering the last node
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Dijkstra Example – Done
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