
CSE 461: Link State Routing

Link State Routing

 Same assumptions/goals, but different idea than DV:

 Make sure all routers have a view of the global
topology

 Have them all independently compute the best
routes
• Note our good old “same input + same algorithm 

consistent output” trick

 Two phases:
1. Topology dissemination (flooding)

- New News travels fast.

- Old News should eventually be forgotten

2. Shortest-path calculation (Dijkstra’s algorithm)

- N log(n)

 Each router monitors state of its directly connected links

 Periodically, send this information to your neighbors

 Generate a link state packet

 Contains router ID, link list, sequence number, time-to-live

 Store and forward LSPs received – if (ID, seqno) is more recent

 Remember this packet for routing calculations

 Forward LSP to all ports other than incoming ports

 This produces a flood; each LSP will travel over the same link at
most once in each direction

 Flooding is fast, and can be made reliable with acknowledgments

Flooding

Example

LSP generated by X at T=0

X A

C B D

X A

C B D

X A

C B D

X A

C B D

T=0 T=1

T=2 T=3

?

?

Will B transmit this LSP to C or A? Why or why not?

Flooding Sequence Numbers

 Use nonces instead of sequence numbers? (i.e., accept
any LSP with a nonce not equal to the one stored)

 Why is this a bad idea?

 Just make the space really big (e.g., 128-bit)?

 What happens if we accidentally emit an n-1 seqno?

 Allow the sequence number space to wrap around?

How do we keep the sequence number space

From being exhausted?

n 0
n-1

1 2

a

>a

<a

Sequence Number Wraparound

Does this solve

sequence

number

exhaustion?

ARPANet failed in 1981, because…

a

b

c

a<b

b<c

c<a

A dying router

emitted 3 LSPs with

3 very unlucky

sequence numbers.

Soon, the entire

network was doing

nothing but

propagating these

same three LSPs

everywhere.

Other Complications

 When link/router fails need to remove old data. How?

 LSPs carry sequence numbers to determine new data

 Send a new LSP with cost infinity to signal a link
down

 What happens if the network is partitioned and heals?

 Different LS databases must be synchronized

 Inconsistent data across routers  loops

Shortest Paths: Dijkstra’s Algorithm

 N: Set of all nodes

 M: Set of nodes for which we think we have a shortest
path

 s: The node executing the algorithm

 L(i,j): cost of edge (i,j) (inf if no edge connects)

 C(i): Cost of the path from s to i.

 Two phases:

 Initialize C(n) according to received link states

 Compute shortest path to all nodes from s
• Link costs are symmetric

The Algorithm

// Initialization

M = {s} // M is the set of all nodes considered so far.

For each n in N - {s}

C(n) = L(s,n)

// Find Shortest paths

Forever {

Unconsidered = N-M

If Unconsidered == {} break

M = M + {w} such that C(w) is the smallest in Unconsidered

For each n in Unconsidered

C(n) = MIN(C(n), C(w) + L(w,n))

}

Open Shortest Path First (OSPF)

 Most widely-used Link State implementation today

 Basic link state algorithms plus many features:

 Authentication of routing messages

 Extra hierarchy: partition into routing areas
• Only bordering routers send link state information to another

area

• Reduces chatter.

• Border router “summarizes” network costs within an area by
making it appear as though it is directly connected to all
interior routers

 Load balancing

Distance Vector Message Complexity

N: number of nodes in the system

M: number of links

D: diameter of network (longest shortest path)

Da: Average degree of a node (# of outgoing links)

 Size of each update:

 Number of updates sent in one iteration:

 Number of iterations for convergence:

 Total message cost:

 Number of messages:

 Incremental cost per iteration:

Link State Message Complexity

N: number of nodes in the system

M: number of links

D: diameter of network (longest shortest path)

Da: Average degree of a node (# of outgoing links)

 Size of each update:

 Number of updates sent in one iteration:

 Number of iterations for convergence:

 Total message cost:

 Number of messages:

 Incremental cost per iteration:

Distance Vector vs. Link State

 When would you choose one over the other?

 Be warned when reading about this on the Internet:
people rate implementations, not fundamentals

 Bandwidth consumed

 Memory used

 Computation required

 Robustness

 Functionality

 Global view of network vs. local?

 Troubleshooting?

 Speed of convergence

Why have two protocols?

 DV: “Tell your neighbors about the world.”

 Easy to get confused

 Simple but limited, costly and slow
• Number of hops might be limited

• Periodic broadcasts of large tables

• Slow convergence due to ripples and hold down

 LS: “Tell the world about your neighbors.”

 Harder to get confused

 More expensive sometimes
• As many hops as you want

• Faster convergence (instantaneous update of link state changes)

• Able to impose global policies in a globally consistent way

– load balancing

Cost Metrics

 How should we choose cost?

 To get high bandwidth, low delay or low loss?

 Do they depend on the load?

 Static Metrics

 Hopcount is easy but treats OC3 (155 Mbps) and T1 (1.5
Mbps)

 Can tweak result with manually assigned costs

 Dynamic Metrics

 Depend on load; try to avoid hotspots (congestion)

 But can lead to oscillations (damping needed)

 Based on load and link

 Variation limited (3:1)
and change damped

 Capacity dominates at
low load; we only try to
move traffic if high load

225

N
e

w
 m

e
tr

ic
 (

ro
u

ti
n

g
 u

n
it
s
)

140

90

75

60

30

25% 50% 75% 100%

9.6-Kbps satellite link

9.6-Kbps terrestrial link

56-Kbps satellite link

56-Kbps terrestrial link Utilization

Revised ARPANET Cost Metric

Key Concepts

 Routing uses global knowledge; forwarding is local

 Many different algorithms address the routing problem

 We have looked at two classes: DV (RIP) and LS
(OSPF)

 Challenges:

 Handling failures/changes

 Defining “best” paths

 Scaling to millions of users

Dijkstra Example – After the flood

10

2 3

5

2

1

4 6

7

9
0

The Unconsidered.The Considered

* *

Dijkstra Example – Post

Initialization

* *

10

2 3

5

2

1

4 6

7

9
0

5

10
inf

inf

The Unconsidered.The Considered

Considering a Node

10

2 3

5

2

1

4 6

7

9
0

5

10
inf

inf

The Unconsidered.The Considered The Under Consideration (w).

Cost updates of 8,14, and 7

Pushing out the horizon

8

2 3

5

2

1

4 6

7

9
0

5 7

14

The Unconsidered.The Considered The Under Consideration (w).

Cost updates of 13

Next Phase

8

2 3

5

2

1

4 6

7

9
0

5 7

13

The Unconsidered.The Considered The Under Consideration (w).

Cost updates of 9

Considering the last node

8

2 3

5

2

1

4 6

7

9
0

5 7

9

The Unconsidered.The Considered The Under Consideration (w).

Dijkstra Example – Done

8

2 3

5

2

1

4 6

7

9
0

5 7

9

