
 

 
 

 

 
 

Chapter 5 58

In TFTP, if the RRQ is duplicated then the server might well create two

processes and two ports from which to answer. (A server that attempted to

do otherwise would have to maintain considerable state about past RRQ’s.)

Whichever process contacted the client first would win out, though, while

the other would receive an error response from the client. In one sense,

then, duplicate TFTP RRQ’s do duplicate the connection, but only one of

the duplicates survives.

(b) The TFTP approach here is to have the client enter a “dallying” period af-

ter the final data was received, so that the process is still around (perhaps

moved to the background) to receive and re-acknowledge any retransmis-

sions of the final data. This period roughly corresponds to TIMEWAIT.

(c) The dallying approach of (b) also ties up the client socket for that period,

preventing another incarnation of the connection. (However, TFTP has no

requirement that dallying persist for a time interval approaching the MSL.)

TFTP also specifies that both sides are to choose “random” port numbers

for each connection (although “random” is generally interpreted as “as-

signed by the operating system”). If either side chooses a new port num-

ber, then late-arriving packets don’t interfere even if the other side reuses its

previous port number. A CONNECT NUM field would also be effective

here.

4. Host A has sent a FIN segment to host B, and has moved from ESTABLISHED

to FIN WAIT 1. Host A then receives a segment from B that contains both

the ACK of this FIN, and also B’s own FIN segment. This could happen if the

application on host B closed its end of the connection immediately when the host

A’s FIN segment arrived, and was thus able to send its own FIN along with the

ACK.

Normally, because the host B application must be scheduled to run before it can

close the connection and thus have the FIN sent, the ACK is sent before the FIN.

While “delayed ACKs” are a standard part of TCP, traditionally only ACKs of

DATA, not FIN, are delayed. See RFC 813 for further details.

5. The two-segment-lifetime timeout results from the need to purge old late dupli-

cates, and uncertainty of the sender of the last ACK as to whether it was received.

For the first issue we only need one connection endpoint in TIMEWAIT; for the

second issue, a host in the LAST ACK state expects to receive the last ACK,

rather than send it.

6. The receiver includes the advertised window in the ACKs to the sender. The

sender probes the receiver to knowwhen the advertised window becomes greater

than 0; if the receiver’s ACK advertising a larger window is lost, then a later

sender probe will elicit a duplicate of that ACK.

If responsibility for the lost window-size-change ACK is shifted from the sender

to the receiver, then the receiver would need a timer for managing retransmission

of this ACK until the receiver were able to verify it had been received.

Chapter 5 59

Amore serious problem is that the receiver only gets confirmation that the sender

has received the ACK when new data arrives, so if the connection happens to fall

idle the receiver may be wasting its time.

8. The sequence number doesn’t always begin at 0 for a transfer, but is randomly
or clock generated.

9. (a) The advertised window should be large enough to keep the pipe full; delay

(RTT) × bandwidth here is 100ms × 100Mbps = 10Mb = 1.25 MB of

data. This requires 21 bits (221 = 2, 097, 152) for the AdvertisedWindow
field. The sequence number field must not wrap around in the maximum

segment lifetime. In 60 seconds, 750MB can be transmitted. 30 bits allows

a sequence space of 1024 MB, and so will not wrap in 60 seconds. (If the

maximum segment lifetime were not an issue, the sequence number field

would still need to be large enough to support twice the maximum window

size; see “Finite Sequence Numbers and Sliding Window” in Section 2.5.)

(b) The bandwidth is straightforward from the hardware; the RTT is also a

precise measurement but will be affected by any future change in the size

of the network. The MSL is perhaps the least certain value, depending as it

does on such things as the size and complexity of the network, and on how

long it takes routing loops to be resolved.

10. The answer is in the book.

11. The problem is that there is no way to determine whether a packet arrived on the

first attempt or whether it was lost and retransmitted.

Having the receiver echo back immediately and measuring the elapsed times

would help; many Berkeley-derived implementations measure timeouts with a

0.5 sec granularity and round-trip times for a single link without loss would gen-

erally be one to two orders of magnitude smaller. But verifying that one had such

an implementation is itself rather difficult.

12. (a) This is 125MB/sec; the sequence numbers wrap around when we send

232 B = 4GB. This would take 4GB/(125MB/sec) = 32 seconds.

(b) Incrementing every 32 ms, it would take about 32 × 4 × 109ms, or about

four years, for the timestamp field to wrap.

13. The answer is in the book.

14. (a) If a SYN packet is simply a duplicate, its ISN value will be the same as

the initial ISN. If the SYN is not a duplicate, and ISN values are clock-

generated, then the second SYN’s ISN will be different.

(b) We will assume the receiver is single-homed; that is, has a unique IP ad-

dress. Let 〈raddr, rport〉 be the remote sender, and lport be the local port.
We suppose the existence of a table T indexed by 〈lport, raddr, rport〉
and containing (among other things) data fields lISN and rISN for the local

and remote ISNs.

Chapter 5 59

Amore serious problem is that the receiver only gets confirmation that the sender

has received the ACK when new data arrives, so if the connection happens to fall

idle the receiver may be wasting its time.

8. The sequence number doesn’t always begin at 0 for a transfer, but is randomly
or clock generated.

9. (a) The advertised window should be large enough to keep the pipe full; delay

(RTT) × bandwidth here is 100ms × 100Mbps = 10Mb = 1.25 MB of

data. This requires 21 bits (221 = 2, 097, 152) for the AdvertisedWindow
field. The sequence number field must not wrap around in the maximum

segment lifetime. In 60 seconds, 750MB can be transmitted. 30 bits allows

a sequence space of 1024 MB, and so will not wrap in 60 seconds. (If the

maximum segment lifetime were not an issue, the sequence number field

would still need to be large enough to support twice the maximum window

size; see “Finite Sequence Numbers and Sliding Window” in Section 2.5.)

(b) The bandwidth is straightforward from the hardware; the RTT is also a

precise measurement but will be affected by any future change in the size

of the network. The MSL is perhaps the least certain value, depending as it

does on such things as the size and complexity of the network, and on how

long it takes routing loops to be resolved.

10. The answer is in the book.

11. The problem is that there is no way to determine whether a packet arrived on the

first attempt or whether it was lost and retransmitted.

Having the receiver echo back immediately and measuring the elapsed times

would help; many Berkeley-derived implementations measure timeouts with a

0.5 sec granularity and round-trip times for a single link without loss would gen-

erally be one to two orders of magnitude smaller. But verifying that one had such

an implementation is itself rather difficult.

12. (a) This is 125MB/sec; the sequence numbers wrap around when we send

232 B = 4GB. This would take 4GB/(125MB/sec) = 32 seconds.

(b) Incrementing every 32 ms, it would take about 32 × 4 × 109ms, or about

four years, for the timestamp field to wrap.

13. The answer is in the book.

14. (a) If a SYN packet is simply a duplicate, its ISN value will be the same as

the initial ISN. If the SYN is not a duplicate, and ISN values are clock-

generated, then the second SYN’s ISN will be different.

(b) We will assume the receiver is single-homed; that is, has a unique IP ad-

dress. Let 〈raddr, rport〉 be the remote sender, and lport be the local port.
We suppose the existence of a table T indexed by 〈lport, raddr, rport〉
and containing (among other things) data fields lISN and rISN for the local

and remote ISNs.

Chapter 5 60

if (connections to lport are not being accepted)
send RST

else if (there is no entry in T for 〈lport, raddr, rport〉) // new SYN
Put 〈lport, raddr, rport〉 into a table,
Set rISN to be the received packet’s ISN,

Set lISN to be our own ISN,

Send the reply ACK

Record the connection as being in state SYN RECD

else if (T [〈lport, raddr, rport〉] already exists)
if (ISN in incoming packet matches rISN from the table)

// SYN is a duplicate; ignore it

else

send RST to 〈raddr, rport〉)

15. x =< y if and only if (y − x) ≥ 0, where the expression y − x is taken to be
signed even though x and y are not.

16. (a) A would send an ACK to B for the new data. When this arrived at B,

however, it would lie outside the range of “acceptable ACKs” and so B

would respond with its own current ACK. B’s ACK would be acceptable to

A, and so the exchanges would stop.

If B later sent less than 100 bytes of data, then this exchange would be

repeated.

(b) Each end would send an ACK for the new, forged data. However, when re-

ceived both these ACKs would lie outside the range of “acceptable ACKs”

at the other end, and so each of A and B would in turn generate their current

ACK in response. These would again be the ACKs for the forged data, and

these ACKs would again be out of range, and again the receivers would

generate the current ACKs in response. These exchanges would continue

indefinitely, until one of the ACKs was lost.

If A later sent 200 bytes of data to B, B would discard the first 100 bytes

as duplicate, and deliver to the application the second 100 bytes. It would

acknowledge the entire 200 bytes. This would be a valid ACK for A.

For more examples of this type of scenario, see Joncheray, L; A Simple Ac-

tive Attack Against TCP; Proceedings of the Fifth USENIX UNIX Security

Symposium, June, 1995.

17. Let H be the host to which A had been connected; we assumed B is able to guess

H. As we are also assuming telnet connections, B can restrict probes to H’s telnet

port (port 23).

First, B needs to find a port A had been using. For various likely ephemeral

port numbers N, B sends an ACK packet from port N to 〈H,telnet〉. For many
implementations, ephemeral ports start at some fixed value (e.g. N=1024) and

increase sequentially; for an unshared machine it is unlikely that very many ports

had been used. If A had had no connection from port N, H will reply to B with a

RST packet. But if H had had an outstanding connection to 〈A,N〉, then H will

 
 

 
 

Chapter 5 62

20. (a) T=0.0 ‘a’ sent

T=1.0 ‘b’ collected in buffer

T=2.0 ‘c’ collected in buffer

T=3.0 ‘d’ collected in buffer

T=4.0 ‘e’ collected in buffer

T=4.1 ACK of ‘a’ arrives, “bcde” sent

T=5.0 ‘f’ collected in buffer

T=6.0 ‘g’ collected in buffer

T=7.0 ‘h’ collected in buffer

T=8.0 ‘i’ collected in buffer

T=8.2 ACK arrives; “fghi” sent

(b) The user would type ahead blindly at times. Characters would be echoed

between 4 and 8 seconds late, and echoing would come in chunks of four

or so. Such behavior is quite common over telnet connections, even those

with much more modest RTTs, but the extent to which this is due to the

Nagle algorithm is unclear.

(c) With the Nagle algorithm, the mouse would appear to skip from one spot

to another. Without the Nagle algorithm the mouse cursor would move

smoothly, but it would display some inertia: it would keep moving for one

RTT after the physical mouse were stopped.

21. (a) We have 4096 ports; we eventually run out if the connection rate averages

more than 4096/60 = 70 per sec. (The range used here for ephemeral ports,

while small, is typical of older TCP implementations.)

(b) In the following we let A be the host that initiated the close (and that is in

TIMEWAIT); the other host is B. A is nominally the client; B the server.

If B fails to receive anACK of its final FIN, it will eventually retransmit that

FIN. So long as A remains in TIMEWAIT it is supposed to reply again with

the correspondingACK. If the sequence number of the FIN were incorrect,

A would send RST.

If we allow reopening before TIMEWAIT expires, then a given very-late-

arriving FIN might have been part of any one of a number of previous

connections. For strict compliance, host A would have to maintain a list

of prior connections, and if an old FIN arrived (as is theoretically possible,

given that we are still within the TIMEWAIT period for the old connec-

tion), host A would consult this list to determine whether the FIN had an

appropriate sequence number and hence whether an ACK or RST should

be sent.

Simply responding with an ACK to all FINs with sequence numbers before

the ISN of the current connection would seem reasonable, though. The

old connection, after all, no longer exists at B’s end to be reset, and A

knows this. A knows, in fact, that a prior final ACK or RST that it sent in

response to B’s FIN was received by B, since B allowed the connection to

be reopened, and so it might justifiably not send anything.

Chapter 5 65

row # SampleRTT EstRTT Dev diff TimeOut

19 1.00 1.24 0.72 -0.27 4.13

20 4.00 1.58 0.98 2.76 5.50

21 1.00 1.51 0.93 -0.58 5.22

22 1.00 1.45 0.88 -0.51 4.95

23 1.00 1.39 0.82 -0.45 4.68

24 1.00 1.34 0.77 -0.39 4.42

25 1.00 1.30 0.72 -0.34 4.16

26 4.00 1.64 0.96 2.70 5.49

27 1.00 1.56 0.92 -0.64 5.25

28 1.00 1.49 0.88 -0.56 4.99

29 1.00 1.43 0.83 -0.49 4.74

30 1.00 1.37 0.78 -0.43 4.48

31 1.00 1.33 0.73 -0.37 4.24

32 4.00 1.66 0.97 2.67 5.54

29. Here is the table of the updates to the EstRTT, etc statistics. Packet loss is ig-

nored; the SampleRTTs given may be assumed to be from successive singly

transmitted segments. Note that the first column, therefore, is simply a row num-

ber, not a packet number, as packets are sent without updating the statistics when

the measurements are ambiguous. Note also that both algorithms calculate the

same values for EstimatedRTT; only the TimeOut calculations vary.

new TimeOut old TimeOut

SampleRTT EstRTT Dev diff EstRTT+4×Dev 2×EstRTT
1.00 0.10 1.40 2.00

1 5.00 1.50 0.59 4.00 3.85 3.00

2 5.00 1.94 0.95 3.50 5.74 3.88

3 5.00 2.32 1.22 3.06 7.18 4.64

4 5.00 2.66 1.40 2.68 8.25 5.32

New algorithm (TimeOut = EstimatedRTT+ 4×Deviation):
There are a total of three retransmissions, two for packet 1 and one for packet 3.

The first packet after the change times out at T=1.40, the value of TimeOut at

that moment. It is retransmitted, with TimeOut backed off to 2.8. It times out

again 4.2 sec after the first transmission, and TimeOut is backed off to 5.6.

At T=5.0 the first ACK arrives and the second packet is sent, using the backed-off

TimeOut value of 5.6. This second packet does not time out, so this constitutes

an unambiguous RTT measurement, and so timing statistics are updated to those

of row 1 above.

When the third packet is sent, with TimeOut=3.85, it times out and is retrans-

mitted. When its ACK arrives the fourth packet is sent, with the backed-off

TimeOut value, 2×3.85 = 7.70; the resulting RTT measurement is unambiguous
so timing statistics are updated to row 2. When the fifth packet is sent, Time-

Out=5.74 and no further timeouts occur.

 
 

 
 

 

 

Chapter 5 66

If we continue the above table to row 9, we get the maximumvalue for TimeOut,

of 10.1, at which point TimeOut decreases toward 5.0.

Original algorithm (TimeOut = 2×EstimatedRTT):
There are five retransmissions: for packets 1, 2, 4, 6, 8.

The first packet times out at T=2.0, and is retransmitted. The ACK arrives before

the second timeout, which would have been at T=6.0.

When the second packet is sent, the backed-off TimeOut of 4.0 is used and we

time out again. TimeOut is now backed off to 8.0. When the third packet is sent,

it thus does not time out; statistics are updated to those of row 1.

The fourth packet is sent with TimeOut=3.0. We time out once, and then trans-

mit the fifth packet without timeout. Statistics are then updated to row 2.

This pattern continues. The sixth packet is sent with TimeOut = 3.88; we

again time out once, send the seventh packet without loss, and update to row

3. The eighth packet is sent with TimeOut=4.64; we time out, back off, send

packet 9, and update to row 4. Finally the tenth packet does not time out, as

TimeOut=2×2.66=5.32 is larger than 5.0.
TimeOut continues to increase monotonically towards 10.0, as EstimatedRTT

converges on 5.0.

30. Let the real RTT (for successful transmissions) be 1.0 units. By hypothesis, ev-

ery packet times out once and then the retransmission is acknowledged after 1.0

units; this means that each SampleRTT measurement is TimeOut+1 = Esti-

matedRTT+1. We then have

EstimatedRTT = α× EstimatedRTT + β× SampleRTT

= EstimatedRTT + β×(SampleRTT−EstimatedRTT).
≥ EstimatedRTT + β

Thus it follows that theN th EstimatedRTT is greater than or equal to Nβ.

Without the assumption TimeOut = EstimatedRTT we still have SampleRTT

− EstimatedRTT≥ 1 and so the above argument still applies.

31. For the steady state, assume the true RTT is 3 and EstimatedRTT is 1. At T=0

we send a data packet. Since TimeOut is twice EstimatedRTT=1, at T=2 the

packet is retransmitted. At T=3 the ACK of the original packet returns (because

the true RTT is 3); measuredSampleRTT is thus 3−2 = 1; this equalsEstimat-
edRTT and so there is no change. This is illustrated by the following diagram:

Chapter 6 83

Wallclock Ai arrivals Fi sent A’s queue B’s queue C’s queue

1 1.0 A1 2.0 C1 A1 C1

C1 1.5

2 1.5 A2 3.0 A1 A1,A2 B2 C2

B2 2.5

C2 2.0

3 1.833 C3 2.5 C2 A2 B2 C2,C3

4 2.166 A4 4.0 B2 A2,A4 B2 C3

5 2.5 C5 3.0 C3 A2,A4 C3,C5

6 3.0 A6 5.0 A2 A2,A4,A6 B6 C5,C6

B6 4.0

C6 3.5

7 3.333 A7 6.0 C5 A4,A6,A7 B6 C5,C6,C7

C7 4.0

8 3.666 B8 5.0 C6 A4,A6,A7 B6,B8 C6,C7,C8

C8 4.5

9 4.0 A9 7.0 A4 A4,A6,A7,A9 B6,B8 C7,C8

10 4.333 A10 8.0 B6 A6,A7,A9,A10 B6,B8 C7,C8

11 4.666 B11 6.0 C7 A6,A7,A9,A10 B8,B11 C7,C8

12 5.0 B12 7.0 C8 A6,A7,A9,A10 B8,B11,B12 C8

13 5.333 A6 A6,A7,A9,A10 B8,B11,B12

14 5.833 B8 A7,A9,A10 B8,B11,B12

15 6.333 B15 8.0 A7 A7,A9,A10 B11,B12,B15

16 B11 A9,A10 B11,B12,B15

17 A9 A9,A10 B12,B15

18 B12 A10 B12,B15

19 A10 A10 B15

20 B15 B15

15. The answer is in the book.

16. (a) In slow start, the size of the window doubles every RTT. At the end of the

ith RTT, the window size is 2iKB. It will take 10 RTTs before the send

window has reached 210KB = 1MB.

(b) After 10 RTTs, 1023KB = 1MB − 1KB has been transferred, and the

window size is now 1MB. Since we have not yet reached the maximum

capacity of the network, slow start continues to double the window each

RTT, so it takes 4 more RTTs to transfer the remaining 9MB (the amounts

transferred during each of these last 4 RTTs are 1MB, 2MB, 4MB, 1MB;

these are all well below the maximum capacity of the link in one RTT of

12.5MB). Therefore, the file is transferred in 14 RTTs.

(c) It takes 1.4 seconds (14 RTTs) to send the file. The effective throughput is

(10MB / 1.4s) = 7.1MBps = 57.1Mbps. This is only 5.7% of the available

link bandwidth.

Chapter 6 84

17. Let the sender window size be 1 packet initially. The sender sends an entire

window-full in one batch; for every ACK of such a window-full that the sender

receives, it increases its effective window (which is counted in packets) by one.

When there is a timeout, the effective window is cut into half the number of

packets.

Now consider the situation when the indicated packets are lost. The window size

is initially 1; when we get the first ACK it increases to 2. At the beginning of

the second RTT we send packets 2 and 3. When we get their ACKs we increase

the window size to 3 and send packets 4, 5 and 6. When these ACKs arrive the

window size becomes 4.

Now, at the beginning of the fourth RTT, we send packets 7, 8, 9, and 10; by

hypothesis packet 9 is lost. So, at the end of the fourth RTT we have a timeout

and the window size is reduced to 4/2 = 2.

Continuing, we have

RTT 5 6 7 8 9

Sent 9-10 11-13 14-17 18-22 23-28

Again the congestion window increases up until packet 25 is lost, when it is

halved, to 3, at the end of the ninth RTT. The plot below shows the window size

vs. RTT.

CONGESTION WINDOW

SIZE

RTT

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1

2

3

4

5

6

7

18. From the figure for the preceding exercise we see that it takes about 17 RTTs

for 50 packets, including the necessary retransmissions. Hence the effective

throughput is 50/17× 100 × 10−3 KB/s = 29.4 KB/s.

19. The formula is accurate if each new ACK acknowledges one new MSS-sized

segment. However, an ACK can acknowledge either small size packets (smaller

than MSS) or cumulatively acknowledge many MSS’s worth of data.Chapter 6 85

Let N = CongestionWindow/MSS, the window size measured in segments.

The goal of the original formula was so that after N segments arrived the net

increment would be MSS, making the increment for one MSS-sized segment

MSS/N . If instead we receive an ACK acknowledging an arbitrary Amoun-

tACKed, we should thus expand the window by

Increment= AmountACKed/N
= (AmountACKed×MSS)/CongestionWindow

20. We may still lose a batch of packets, or else the window size is small enough that

three subsequent packets aren’t sent before the timeout. Fast retransmit needs

to receive three duplicate ACKs before it will retransmit a packet. If so many

packets are lost (or the window size is so small) that not even three duplicate

ACKs make it back to the sender, then the the mechanism cannot be activated,

and a timeout will occur.

21. We will assume in this exercise and the following two that when TCP encoun-

ters a timeout it reverts to stop-and-wait as the outstanding lost packets in the

existing window get retransmitted one at a time, and that the slow start phase

begins only when the existing window is fully acknowledged. In particular, once

one timeout and retransmission is pending, subsequent timeouts of later packets

are suppressed or ignored until the earlier acknowledgment is received. Such

timeouts are still shown in the tables below, but no action is taken.

We will let Data N denote the Nth packet; Ack N here denotes the acknowledg-

ment for data up through and including data N.

(a) Here is the table of events with TimeOut = 2 sec. There is no idle time on
the R–B link.

Time A recvs A sends R sends cwnd size

0 Data0 Data0 1

1 Ack0 Data1,2 Data1 2

2 Ack1 Data3,4 (4 dropped) Data2 3

3 Ack2 Data5,6 (6 dropped) Data3 4

4 Ack3/timeout4 Data 4 Data5 1

5 Ack3/timeout5&6 Data4 1

6 Ack5 Data 6 Data6 1

7 Ack 6 Data7,8 (slow start) Data7 2

(b) WithTimeOut = 3 sec, we have the following. Again nothing is transmitted

at T=6 because ack 4 has not yet been received.

 

Chapter 6 89

might be appropriate. Either might need considerable tuning to handle a

25% loss rate.

30. Suppose the first two connections keep the queue full 95% of the time, alternating

transmissions in lockstep and timed so that their packets always arrive just as a

queue vacancy opens. Suppose also that the third connection’s packets happen

always to arrive when the queue is full. The third connection’s packets will thus

be lost, whether we use slow start or not. The first two connections will not be

affected.

Congestion avoidance by the first two connections means that they will even-

tually try a window size of 4, and fall back to 2, and give the third connection

a real foot in the door. Slow start for the third connection would mean that if

a packet got through, then the window would expand to 2 and the third sender

would have about twice the probability of getting at least one packet through.

However, since a loss is likely, the window size would soon revert to 1.

31. (a) We lose 1100 ms: we wait 300ms initially to detect the third duplicate

ACK, and then one full 800ms RTT as the sender waits for the ACK of the

retransmitted segment. If the lost packet is sent at T=−800, the lost ACK
would have arrived at T=0. The duplicates arrive at T=100, 200, and 300.

We retransmit at T=300, and the ACK finally arrives at T=1100.

(b) We lose 1100− 400 = 700ms. As shown in the diagram, the elapsed time
before we resume is again 1100ms but we have had four extra chances to

transmit during that interval, for a savings of 400ms.

