Structured and Unstructured
Peer-to-Peer Computing

Peer-to-Peer Computing

= Quickly grown in popularity:
= Dozens or hundreds of file sharing applications
= In 2004:

e 35 million adults used P2P networks — 29% of all Internet
users in USA

e 35% of Internet traffic is from BitTorrent

= Upset the music industry, drawn college students, web
developers, recording artists and universities into court

= But P2P is not new and is probably here to stay

= P2P is simply the next iteration of scalable distributed systems

What is P2P?

Peers serve as both clients and servers
Eliminates or minimizes the need for a centralized node

P2P has a rich history
Original Internet was a p2p system:

= The original ARPANET connected UCLA, Stanford
Research Institute, UCSB, and Univ. of Utah

= No routing infrastructure, just connected by phone
lines

= Computers also served as routers

P2P Systems

= File Sharing
= Napster
= Gnutella
= BitTorrent

= Research systems
= Distributed Hash Tables
= Content distribution networks

= Collaborative computing:
= SETI@Home project
= Human genome mapping

= Intel NetBatch: 10,000 computers in 25 worldwide sites for
simulations, saved about 500million

Topic Outline

= Unstructured paradigm for p2p computing
Centralized Database: Napster

Query Flooding: Gnutella

Intelligent Query Flooding: Freenet
Swarming exchange: BitTorrent

= Structured paradigm for p2p computing
= Distributed Hash Tables

The Lookup Problem
2
2 ., =
Nl 2 N3
Key="title”
Value=MP3 data... Cl'n
. ient
Publisher el
Lookup(“title™)
L'}
N4 N Nﬁ
2 5 2

The Lookup Problem

= Common Primitives:

Join: how does a peer begin participating?
Publish: how does a peer advertise a file?
Search: how does a peer find a file?
Fetch: how does a peer retrieve a file?

Centralized Database: Napster

= Shawn Fanning a freshman from NorthEastern develops
Napster in May 1999

= Uses a centralized database
= RIAA sues Napster in December 1999

= Napster peaked at 1.5 million simultaneous users and
2.79 billion files in Feb 2001

= In July 2001, Napster is shut down

Napster: Publish

| have X, Y, and Z! &&&
123.2.21.23

Napster: Search

123.2.0.18 [}

Where is file A? &&52

Napster: Discussion

= Pros:

= Simple
= Search scope is O(1)
= Controllable (pro or con?)

= Cons:

= Server maintains O(N) State
= Server does all processing
= Single point of failure

Query Flooding: Gnutella

On March 14t 2000, J. Frankel and T. Pepper from
AOL's Nullsoft division (also the developers of the
popular Winamp mp3 player) released Gnutella

Within hours, AOL pulled the plug on it

Quickly reverse-engineered and soon manK other
clients became available: Bearshare, Morpheus,
LimeWire, etc.

In 2001, many protocol enhancements including
“ultrapeers”

Gnutella: Search

| have file A.

lhavefleA. B——8 B

Where is file A? @52

Gnutella: Discussion

= Pros:
= Fully de-centralized
= Search cost distributed
= Cons:
= Search scope is O(N)
= Search time is O(???)
= Nodes leave often, network unstable

Aside: Search Time?

Aside: All Peers Equal?

/ \ 6kbps Modem
1.5Mbps DSL
(Y 10Mbps LAN

2 /
1.5Mbps DSL\‘ \‘

56kbps Modem

1.5Mbps DSL ‘ 1.5Mbps DSL

56kbps Modem

Aside: Network Resilience

Partial Topology Random 30% die Targeted 4% die

from Saroiu et al., MMCN 2002

Flooding: FastTrack (aka Kazaa)

Modifies the Gnutella protocol into two-level hierarchy
Supernodes

= Nodes that have better connection to Internet

= Act as temporary indexing servers for other nodes

= Help improve the stability of the network
Standard nodes

= Connect to supernodes and report list of files
Search

= Broadcast (Gnutella-style) search across supernodes
Disadvantages

= Kept a centralized registration = prone to law suits

Freenet: Smart Routing

= In 1999, 1. Clarke started the Freenet project
= Basic Idea:

= Employ Internet-like routing on the overlay
network to publish and locate files

= Additional goals:
= Provide anonymity and security
= Make censorship difficult

Freenet: Routing Tables

= id - file identifier (e.g., hash of file)
= next_hop — another node that stores the file id
= file — file identified by id being stored on the local node

id | next_hop| file

= Forwarding of query for file id

= If file id stored locally, then stop
¢ Forward data back to upstream requestor

= If not, search for the “closest” id in the table, and
forward the message to the corresponding
next_hop

= If data is not found, failure is reported back
o Retﬂuestor then tries next closest match in routing
table

Freenet: Routing

27" B
n1 * n2
4|n1|f4 7; 9ln3lfo |~ _ .
12| n2[f12 ~
22 . B 2
‘\‘ n4 n5
P 14|n5]114| 5 4|n1]f4
2 13[n2[113 | ™ [10]n5[f10
n3 3/' 3[n6 8|n6
3[n1]3
14 &[4
5[n3

Freenet: Overview

= Routed Queries:

= Search: route query for file id toward the closest node id

= Fetch: when query reaches a node containing file id, it
returns the file to the sender through the intermediate
nodes
¢ Update routing table entries

= Publish: route file contents toward the file id. File is
stored at node with id closest to file id

Freenet: Routing Properties

“Close” file ids tend to be stored on the same node

= Why? Publications of similar file ids route toward the same
place

= Network tend to be a “small world”

= Small number of nodes have large humber of neighbors
(i.e., ~ “six-degrees of separation”)

= Consequence:

= Most queries only traverse a small number of hops to find
the file

Freenet: Discussion

= Pros:
= Intelligent routing makes queries relatively short

= Search scope small (only nodes along search path
involved); no flooding

= Anonymity properties may give you “plausible deniability”
= Cons:

= Still no provable guarantees!

= Anonymity features make it hard to measure, debug

BitTorrent: Swarming Exchange

= In 2002, B. Cohen debuted BitTorrent
Key Motivation:

Popularity exhibits temporal locality (Flash Crowds)

E.g., Slashdot effect, CNN on 9/11, new movie/game
release

Previous p2p systems had the problem with free-riding
70% of Gnutella users didn’t contribute
Used “tit-for-tat” after breaking up a file into blocks

Overview

Focused on Efficient Fetching, not Searching (out-of-band):

= Distribute the same file to all peers
= Single publisher, multiple downloaders

= Swarming:

= Join: contact centralized “tracker” server, get a list of

peers.

= Fetch: Download chunks of the file from your peers.

Upload chunks you have to them.

BitTorrent: Publish/Join

s Seed

TN,

</

BitTorrent: Fetch

AT

BitTorrent: Sharing Strategy

= Employ “Tit-for-tat” sharing strategy
= “T'll share with you if you share with me”
= Be optimistic: occasionally let freeloaders download
¢ Otherwise no liveness guarantees

¢ Also allows you to discover better peers to download from
when they reciprocate

BitTorrent: Summary

= Pros:
= Works reasonably well in practice

= Gives peers incentive to share resources; avoids
freeloaders

= Cons:
= Peer selection is crucial
= Central tracker server needed to bootstrap swarm

Topic Outline

= Unstructured paradigm for p2p computing
= Centralized Database: Napster
= Query Flooding: Gnutella
= Intelligent Query Flooding: Freenet
= Swarming exchange: BitTorrent

= Structured paradigm for p2p computing
= Distributed Hash Tables

Distributed Hash Tables (DHT):

History
In 2000-2001, academic researchers jumped on to the P2P
bandwagon
Motivation:

= Frustrated by popularity of all these “half-baked” P2P apps.
We can do better! (so they said)

= Guaranteed lookup success for files in system
= Provable bounds on search time
= Provable scalability to millions of node

Hot topic in networking ever since

DHT: Overview

= Abstraction: a distributed “hash-table” (DHT) data structure:
= put(id, item);
= item = get(id);
= Implementation: nodes in system form an interconnection
network

= Can be Ring, Tree, Hypercube, Butterfly Network, ...

DHT: Example - Chord

= Associate with each node and file a unique idin an uni-
dimensional space (a Ring)

= E.g., pick from the range [0...2™]
= Usually the hash of the file or IP address
= Properties:

= Routing table size is O(log N) , where N is the total number
of nodes

= Guarantees that a file is found in O(log N) hops

from MIT in 2001

DHT: Consistent Hashing

Node 105
ode 105

Key 5—— K5

Circular ID space 8 N32

N9O0 2
™
K80

A key is stored at its successor: node with next higher ID

DHT: Chord Basic Lookup

N120 \,j
- N10
2 _\ “Where is key 80?”

n\\é

[E—

“N90 has K80”

K80|N90

DHT: Chord “Finger Table”

Entry J in the finger table of node n is the first node that succeeds or
equals n + 2/

In other words, the it finger points 1/2™ way around the ring

DHT: Chotd Join

= Assume an identifier space [0..8]

= Node n1 joins

Succ. Table

id+2'|succ
2 1
1
5 1

N = o~
w

DHT: Chotd Join

= Node n2 joins

Succ. Table

‘n i ligd+2'|succ
0] 2 2
1 3 1
2| 5 1

Succ. Table

ic+2'|succ

i
0
1
2

DHT: Chotd Join

Succ. Table
i |ig+2'|succ
o 1] 1
11 2] 2
2l 4]0
= Nodes n0, n6 join 8l e
0 \ 7 [ili+2]suce
<5 1" o 22
11316
Succ. Table 25]°
i lig+2|suce| \
28

6
il |
2

2|2

Succ. Table

ic+2'|succ

i
0
1
2

DHT: Chotd Join

Succ. Table 1oms
= Nodes: i lig+2'|succ
' o 1] 1
nl, n2, n0, n6 1 2] 2
g 21 4]0
= Items: 2

7 f1 0 g |

Succ. Table |1ems

~~_ |ilio+2]succ
of 2] 2
1 3| 6
2| 5|6
Succ. Table n»G

28
id+2| succ

i
0
1 Succ. Table
2

i |id+2'|succ
of 3|6
1 4| 6
2| 6| 6

DHT: Chord Routing

Succ. Table

ltems
. lépon receiving a query for item é) "d';zl Suce
id, a node: il 2l o
= Checks whether stores the item o alo
locally n’]
= If not, forwards the query to the ~ \
largest node in its successor 0 n/J Succ. Table jtems
table that does not exceed id <, 18R [iig+2]suce
query(7) \ N
Succ. Table n'G 2’
NS
Succ. Table
i lig+2'|suce
0 36
1 4|6
2l 6|6

DHT:': Chord Summary

= Routing table size?
= Log N fingers
= Routing time?
= Each hop expects to 1/2 the distance to the
desired id => expect O(log N) hops.

= What is good/bad about Chord?

