
Structured and Unstructured
Peer-to-Peer Computing

Peer-to-Peer Computing

 Quickly grown in popularity:
 Dozens or hundreds of file sharing applications
 In 2004:

• 35 million adults used P2P networks – 29% of all Internet
users in USA

• 35% of Internet traffic is from BitTorrent
 Upset the music industry, drawn college students, web

developers, recording artists and universities into court

 But P2P is not new and is probably here to stay

 P2P is simply the next iteration of scalable distributed systems

What is P2P?

 Peers serve as both clients and servers
 Eliminates or minimizes the need for a centralized node

 P2P has a rich history
 Original Internet was a p2p system:

 The original ARPANET connected UCLA, Stanford
Research Institute, UCSB, and Univ. of Utah

 No routing infrastructure, just connected by phone
lines

 Computers also served as routers

P2P Systems

 File Sharing
 Napster
 Gnutella
 BitTorrent

 Research systems
 Distributed Hash Tables
 Content distribution networks

 Collaborative computing:
 SETI@Home project
 Human genome mapping
 Intel NetBatch: 10,000 computers in 25 worldwide sites for

simulations, saved about 500million

Topic Outline

 Unstructured paradigm for p2p computing
 Centralized Database: Napster
 Query Flooding: Gnutella
 Intelligent Query Flooding: Freenet
 Swarming exchange: BitTorrent

 Structured paradigm for p2p computing
 Distributed Hash Tables

The Lookup Problem

Internet

N1
N2 N3

N6N5
N4

Publisher

Key=“title”
Value=MP3 data… Client

Lookup(“title”)

?

The Lookup Problem

 Common Primitives:
 Join: how does a peer begin participating?
 Publish: how does a peer advertise a file?
 Search: how does a peer find a file?
 Fetch: how does a peer retrieve a file?

Centralized Database: Napster

 Shawn Fanning a freshman from NorthEastern develops
Napster in May 1999

 Uses a centralized database
 RIAA sues Napster in December 1999
 Napster peaked at 1.5 million simultaneous users and

2.79 billion files in Feb 2001
 In July 2001, Napster is shut down

Napster: Publish

I have X, Y, and Z!

Publish

insert(X,
 123.2.21.23)
...

123.2.21.23

Napster: Search

Where is file A?

Query Reply

search(A)
-->
123.2.0.18Fetch

123.2.0.18

Napster: Discussion

 Pros:

 Simple
 Search scope is O(1)
 Controllable (pro or con?)

 Cons:

 Server maintains O(N) State
 Server does all processing
 Single point of failure

Query Flooding: Gnutella

 On March 14th 2000, J. Frankel and T. Pepper from
AOL’s Nullsoft division (also the developers of the
popular Winamp mp3 player) released Gnutella

 Within hours, AOL pulled the plug on it

 Quickly reverse-engineered and soon many other
clients became available: Bearshare, Morpheus,
LimeWire, etc.

 In 2001, many protocol enhancements including
“ultrapeers”

I have file A.

I have file A.

Where is file A?

Query

Reply

Gnutella: Search

Gnutella: Discussion

 Pros:
 Fully de-centralized
 Search cost distributed

 Cons:
 Search scope is O(N)
 Search time is O(???)
 Nodes leave often, network unstable

Aside: Search Time?

Aside: All Peers Equal?

56kbps Modem

10Mbps LAN

1.5Mbps DSL

56kbps Modem
56kbps Modem

1.5Mbps DSL

1.5Mbps DSL

1.5Mbps DSL

Aside: Network Resilience

Partial Topology Random 30% die Targeted 4% die

from Saroiu et al., MMCN 2002

Flooding: FastTrack (aka Kazaa)

 Modifies the Gnutella protocol into two-level hierarchy
 Supernodes

 Nodes that have better connection to Internet
 Act as temporary indexing servers for other nodes
 Help improve the stability of the network

 Standard nodes
 Connect to supernodes and report list of files

 Search
 Broadcast (Gnutella-style) search across supernodes

 Disadvantages
 Kept a centralized registration  prone to law suits

Freenet: Smart Routing

 In 1999, I. Clarke started the Freenet project
 Basic Idea:

 Employ Internet-like routing on the overlay
network to publish and locate files

 Additional goals:
 Provide anonymity and security
 Make censorship difficult

Freenet: Routing Tables

 id – file identifier (e.g., hash of file)
 next_hop – another node that stores the file id
 file – file identified by id being stored on the local node

 Forwarding of query for file id

 If file id stored locally, then stop
• Forward data back to upstream requestor

 If not, search for the “closest” id in the table, and
forward the message to the corresponding
next_hop

 If data is not found, failure is reported back
• Requestor then tries next closest match in routing

table

id next_hop file

…
…

Freenet: Routing

 4 n1 f4
12 n2 f12
 5 n3

 9 n3 f9

 3 n1 f3
14 n4 f14
 5 n3

14 n5 f14
13 n2 f13
 3 n6

n1 n2

n3

n4

 4 n1 f4
10 n5 f10
 8 n6

n5

query(10)

1

2

3

4

4’

5

Freenet: Overview

 Routed Queries:

 Search: route query for file id toward the closest node id

 Fetch: when query reaches a node containing file id, it
returns the file to the sender through the intermediate
nodes

• Update routing table entries

 Publish: route file contents toward the file id. File is
stored at node with id closest to file id

Freenet: Routing Properties

 “Close” file ids tend to be stored on the same node
 Why? Publications of similar file ids route toward the same

place
 Network tend to be a “small world”

 Small number of nodes have large number of neighbors
(i.e., ~ “six-degrees of separation”)

 Consequence:
 Most queries only traverse a small number of hops to find

the file

Freenet: Discussion

 Pros:
 Intelligent routing makes queries relatively short
 Search scope small (only nodes along search path

involved); no flooding
 Anonymity properties may give you “plausible deniability”

 Cons:
 Still no provable guarantees!
 Anonymity features make it hard to measure, debug

BitTorrent: Swarming Exchange

 In 2002, B. Cohen debuted BitTorrent
 Key Motivation:

 Popularity exhibits temporal locality (Flash Crowds)
 E.g., Slashdot effect, CNN on 9/11, new movie/game

release

 Previous p2p systems had the problem with free-riding
 70% of Gnutella users didn’t contribute
 Used “tit-for-tat” after breaking up a file into blocks

Overview

 Focused on Efficient Fetching, not Searching (out-of-band):

 Distribute the same file to all peers
 Single publisher, multiple downloaders

 Swarming:
 Join: contact centralized “tracker” server, get a list of

peers.
 Fetch: Download chunks of the file from your peers.

Upload chunks you have to them.

BitTorrent: Publish/Join

Seed

BitTorrent: Fetch

BitTorrent: Sharing Strategy

 Employ “Tit-for-tat” sharing strategy
 “I’ll share with you if you share with me”
 Be optimistic: occasionally let freeloaders download

• Otherwise no liveness guarantees
• Also allows you to discover better peers to download from

when they reciprocate

BitTorrent: Summary

 Pros:
 Works reasonably well in practice
 Gives peers incentive to share resources; avoids

freeloaders
 Cons:

 Peer selection is crucial
 Central tracker server needed to bootstrap swarm

Topic Outline

 Unstructured paradigm for p2p computing
 Centralized Database: Napster
 Query Flooding: Gnutella
 Intelligent Query Flooding: Freenet
 Swarming exchange: BitTorrent

 Structured paradigm for p2p computing
 Distributed Hash Tables

Distributed Hash Tables (DHT):
History

 In 2000-2001, academic researchers jumped on to the P2P
bandwagon

 Motivation:
 Frustrated by popularity of all these “half-baked” P2P apps.

We can do better! (so they said)
 Guaranteed lookup success for files in system
 Provable bounds on search time
 Provable scalability to millions of node

 Hot topic in networking ever since

DHT: Overview

 Abstraction: a distributed “hash-table” (DHT) data structure:
 put(id, item);
 item = get(id);

 Implementation: nodes in system form an interconnection
network
 Can be Ring, Tree, Hypercube, Butterfly Network, ...

DHT: Example - Chord

 Associate with each node and file a unique id in an uni-
dimensional space (a Ring)
 E.g., pick from the range [0...2m]
 Usually the hash of the file or IP address

 Properties:
 Routing table size is O(log N) , where N is the total number

of nodes
 Guarantees that a file is found in O(log N) hops

from MIT in 2001

DHT: Consistent Hashing

N32

N90

N105

K80

K20

K5

Circular ID space

Key 5
Node 105

A key is stored at its successor: node with next higher ID

DHT: Chord Basic Lookup

N32

N90

N105

N60

N10
N120

K80

“Where is key 80?”

“N90 has K80”

DHT: Chord “Finger Table”

N80

1/21/4

1/8

1/16
1/32
1/64
1/128

 Entry i in the finger table of node n is the first node that succeeds or
equals n + 2i

 In other words, the ith finger points 1/2n-i way around the ring

DHT: Chord Join

 Assume an identifier space [0..8]

 Node n1 joins

0
1

2

3
4

5

6

7
i id+2i succ
0 2 1
1 3 1
2 5 1

Succ. Table

DHT: Chord Join

 Node n2 joins
0

1

2

3
4

5

6

7
i id+2i succ
0 2 2
1 3 1
2 5 1

Succ. Table

i id+2i succ
0 3 1
1 4 1
2 6 1

Succ. Table

DHT: Chord Join

 Nodes n0, n6 join
0

1

2

3
4

5

6

7
i id+2i succ
0 2 2
1 3 6
2 5 6

Succ. Table

i id+2i succ
0 3 6
1 4 6
2 6 6

Succ. Table

i id+2i succ
0 1 1
1 2 2
2 4 0

Succ. Table

i id+2i succ
0 7 0
1 0 0
2 2 2

Succ. Table

DHT: Chord Join

 Nodes:
n1, n2, n0, n6

 Items:
f7, f1 0

1

2

3
4

5

6

7 i id+2i succ
0 2 2
1 3 6
2 5 6

Succ. Table

i id+2i succ
0 3 6
1 4 6
2 6 6

Succ. Table

i id+2i succ
0 1 1
1 2 2
2 4 0

Succ. Table
7

Items
1

Items

i id+2i succ
0 7 0
1 0 0
2 2 2

Succ. Table

7

DHT: Chord Routing

 Upon receiving a query for item
id, a node:

 Checks whether stores the item
locally

 If not, forwards the query to the
largest node in its successor
table that does not exceed id

0
1

2

3
4

5

6

7 i id+2i succ
0 2 2
1 3 6
2 5 6

Succ. Table

i id+2i succ
0 3 6
1 4 6
2 6 6

Succ. Table

i id+2i succ
0 1 1
1 2 2
2 4 0

Succ. Table

Items
1

Items

i id+2i succ
0 7 0
1 0 0
2 2 2

Succ. Table

query(7)

DHT: Chord Summary

 Routing table size?
 Log N fingers

 Routing time?
 Each hop expects to 1/2 the distance to the

desired id => expect O(log N) hops.

 What is good/bad about Chord?

