IP Addressing & Interdomain Routing

Scalability Concerns

- Routing burden grows with size of an inter-network
 - Size of routing tables
 - Volume of routing messages
 - Amount of routing computation
- To scale to the size of the Internet, apply:
 - Hierarchical addressing
 - Use of structural hierarchy
 - Route aggregation

		dress F			
		7	24		
Class A	0 Netv	work	Host		
		14		16	
Class B	1 0	Network	Н	Host	
		21		8	
Class C	1 1 0	1 0 Network		Host	
32 bits written in	"dotted	quad" nota	tion, e.g	., 18.3	

CIDR (Supernetting)

- CIDR = Classless Inter-Domain Routing
- Generalize class A, B, C into prefixes of arbitrary length; now must carry prefix length with address
- Aggregate adjacent advertised network routes
 - e.g., ISP has class C addresses 192.4.16 through 192.4.31
 - Really like one larger 20 bit address class ...
 - Advertise as such (network number, prefix length)
 - Reduces size of routing tables
- But IP forwarding is more involved
 - Based on Longest Matching Prefix operation

