
CSE 461: TCP and Network
Congestion

This Lecture

Focus
How should senders pace
themselves to avoid stressing the
network?

Topics
congestion collapse
congestion control

Physical
Data Link
Network

Transport
Session

Presentation
Application

Buffers at routers used to absorb bursts when input rate >
output
Loss (drops) occur when sending rate is persistently > drain
rate

Destination
1.5-Mbps T1 link

Router

Source
2

Source
1

100-Mbps FDDI

10-Mbps Ethernet

Congestion from in the network

Packets queued here

Congestion Collapse

In the limit, premature retransmissions lead to congestion
collapse

e.g., 1000x drop in effective bandwidth of network
sending more packets into the network when it is
overloaded exacerbates the problem of congestion
(overflow router queues)
network stays busy but very little useful work is being
done

Congestion Collapse

This happened in real life ~1987
Led to Van Jacobson’s TCP algorithms
• these form the basis of congestion control in the

Internet today
Researchers asked two questions:
• Was TCP misbehaving?
• Could TCP be “trained” to work better under ‘absymal

network conditions?’

A Scenario

Receiver window size is 16KB.

Bottleneck router buffer size is
15 KB.

Data bandwidth is about 20KB/s

Slope is bandwidth.

Steep smooth upward
slope == means good
bandwidth.

Downward slope means
retransmissions (bad).

Effects of early retransmission

If only…

We knew RTT and Current Router Queue Size,
then we would send:

MIN(Router Queue Size, Effective Window Size)

and not retransmit a packet until it had been sent
RTT ago.

But we don’t know these things
so we have to estimate them

They change over time because of other data sources
so we have to continually adapt them

Ideal packet flow: stable equilibrium

Pr = Interpacket spacing --> mirrors that of slowest link

As = Inter-ACK spacing --> mirrors that of slowest downstream link

Modern TCP in previous scenario

Notice:

• no retransmissions,
(and thus no packet loss)

• achieved BW =
bottleneck BW

1988 Observations on Congestion
Collapse

Implementation, not the protocol, leads to collapse
choices about when to retransmit, when to “back off”
because of losses

“Obvious” ways of doing things lead to non-obvious and
undesirable results

“send effective-window-size # packets, wait RTT, try
again”

Remedial algorithms achieve network stability by forcing the
transport connection to obey a ‘packet conservation’ principle.

for connection in equilibrium (stable with full window in
transit), packet flow is conservative
• a new packet not put in network until an old packet

leaves

Resulting TCP/IP Improvements

Slow-start
Round-trip time variance estimation
Exponential retransmit timer backoff
More aggressive receiver ack policy
Dynamic window sizing on
congestion
Clamped retransmit backoff (Karn)
Fast Retransmit

Packet Conservation
Principle

Congestion control means: “Finding places that violate the
conservation of packets principle and then fixing them.”

Key ideas

Routers queue packets
if queue overflows, packet loss occurs
happens when network is “congested”

Retransmissions deal with loss
need to retransmit sensibly
• too early: needless retransmission
• too late: lost bandwidth

Senders must control their transmission pace
flow control: send no more than receiver can
handle
congestion control: send no more than network
can handle

Basic rules of TCP congestion
control

1. The connection must reach equilibrium.
– hurry up and stabilize!
– when things get wobbly, put on the brakes and reconsider

2. Sender must not inject a new packet before an old packet
has left
– a packet leaves when the receiver picks it up,
– or if it gets lost.

• damaged in transit or dropped at congested point
• (far fewer than 1% of packets get damaged in

practice)

– ACK or packet timeout signals that a packet has
“exited.”

– ACK are easy to detect.
– appropriate timeouts are harder…. all about

estimating RTT.
3. Equilibrium is lost because of resource contention

along the way.
– new competing stream appears, must restabilize

1. The connection must reach equilibrium.

1. Getting to Equilibrium -- Slow
Start

Goal
Quickly determine the appropriate window size
• Basically, we’re trying to sense the bottleneck

bandwidth

Strategy
Introduce congestion_window (cwnd)
When starting off, set cwnd to 1
For each ACK received, add 1 to cwnd
When sending, send the minimum of receiver’s advertised
window and cwnd

Guaranteed to not transmit at more than twice the max BW,
and for no more than RTT.

(bw delay product)

Cwnd doubles every RTT;

Opening a window of size

W takes time (RTT)log2W.

Slow Start

Note that the effect is to double transmission rate
every RTT

This is ‘slow’?

Basically an effective way to probe for the
bottleneck bandwidth, using packet losses as the
feedback

No change in protocol/header was required to
implement

When do you need to do this kind of probing?

2. A sender must not inject a new packet before an old packet has exited.

2. Packet Injection. Estimating
RTTs

Do not inject a new packet until an old packet has left.
1. ACK tells us that an old packet has left.
2. Timeout expiration tells us as well.

• We must estimate RTT properly.

Strategy 1: pick some constant RTT.
simple, but probably wrong. (certainly not adaptive)

Strategy 2: Estimate based on past behavior.

Tactic 0: Mean
Tactic 1: Mean with exponential decay
Tactic 2: Tactic 1 + safety margin

safety margin based on current estimate of error in Tactic 1

Original TCP (RFC793)
retransmission timeout algorithm
Use EWMA to estimate RTT:

EstimatedRTT = (1-g)(EstimatedRTT)
+ g(SampleRTT)

0 ≤ g ≤ 1, usually g = .1 or .2

Conservatively set timeout to small multiple (2x) of the
estimate

Retransmission Timeout = 2 x
EstimatedRTT

Jacobson/Karels Algorithm

1. DevRTT = (1-b) * DevRTT + b * |SampledRTT -
EstimatedRTT|

• typically, b = .25

2. Retransmission timeout = EstimatedRTT + k * DevRTT
k is generally set to 4

timeout =~ EstimatedRTT when variance is low (estimate
is good)

3. Equilibrium is lost because of resource contention along the way.

Source
2

100-Mbps FDDI

Congestion from Multiple Sources

Destination
1.5-Mbps T1 link

Router

Source
1 10-Mbps Ethernet

Packets queued here

Packets Lost Here

In Real Life

Four Simultaneous Streams

TCP is “Self-Clocking”

ACKs pace transmissions at approximately the
botteneck rate

So just by sending packets we can discern the
“right” sending rate (called the packet-pair
technique)

Sink
45 Mbps T3 linkRouter

Source
100 Mbps Ethernet

Congestion Control Relies on
Signals from the Network

The network is not saturated: Send even more
The network is saturated: Send less

ACK signals that the network is not saturated.
A lost packet (no ACK) signals that the network is saturated
Leads to a simple strategy:

On each ack, increase congestion window (additive
increase)
On each lost packet, decrease congestion window
(multiplicative decrease)

Why increase slowly and decrease quickly?
Respond to good news conservatively, but bad news
aggressively

AIMD (Additive Increase/Multiplicative
Decrease)

How to adjust probe rate?

Increase slowly while we
believe there is bandwidth

Additive increase per
RTT
Cwnd += 1 packet /
RTT

Decrease quickly when
there is loss (went too
f)

Source Destination

…

With Additive
Increase/Multiplicative Decrease

TCP Sawtooth Pattern

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

C
w

nd
(K

B
)

T ime (seconds)

70

30
40
50

10

10.0

Comparing to “Slow Start”

Q: What is the ideal value of
cwnd? How long will AIMD take to
get there?

Use a different strategy to get
close to ideal value

Slow start:
• Double cwnd every RTT

– cwnd *= 2 per RTT
– i.e., cwnd += 1 per

ACK
AIMD:
• add one to cwnd per RTT

– cwnd +=1 per RTT
– i.e., cwnd += (1/cwnd)

pe ACK

Source Destination

…

Combining Slow Start and AIMD

Slow start is used whenever the connection is not running
with packets outstanding

initially, and after timeouts indicating that there’s no data
on the wire

But we don’t want to overshoot our ideal cwnd on next slow
start, so remember the last cwnd that worked with no loss

ssthresh = cwnd after cwnd /= 2 on loss
switch to AIMD once cwnd passes ssthresh

ssthresh

Example (Slow Start +AIMD)

Time (seconds)

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

K
B

70

30
40
50

10

Timeout TimeoutTimeout

Packets that will be lostSlowstart
AIMD

The Long Timeout Problem

Would like to “signal” a lost packet earlier than
timeout

enable retransmit sooner
Can we infer that a packet has been lost?

Receiver receives an “out of order packet”
Good indicator that the one(s) before have been
misplaced

Receiver generates a duplicate ack on receipt of a
misordered packet
Sender interprets sequence of duplicate acks as a
signal that the as-yet-unacked packet has not
arrived

Fast Retransmit

TCP uses cumulative
acks, so duplicate acks
start arriving after a
packet is lost.
We can use this fact to
infer which packet was
lost, instead of waiting
for a timeout.
3 duplicate acks are
used in practice

Packet 1

Packet 2
Packet 3
Packet 4

Packet 5

Packet 6

Retransmit
packet 3

ACK 1

ACK 2

ACK 2

ACK 2

ACK 6

ACK 2

Sender Receiver

Example (with Fast Retransmit)

Time (seconds)

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0

K
B

70

30
40
50

10

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

K
B

70

30
40
50

10

Timeout TimeoutTimeout

FT

NO FT

Fast Recovery

After Fast Retransmit, use further duplicate acks to
grow cwnd and clock out new packets, since these
acks represent packets that have left the network.
End result: Can achieve AIMD when there are single
packet losses. Only slow start the first time and on a
real timeout.

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0

K
B

70

30
40
50

10

Example (with Fast Recovery)

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

C
w

nd
(K

B
)

T ime (seconds)

70

30
40
50

10

10.0

(Not the same trace as before)

The Familiar Saw Tooth Pattern

Fairness – an informal argument

Client A Bandwidth

C
l
i
e
n
t

B

B
a
n
d
w
i
d
t
h

Bottleneck bandwidth Client A has an ongoing flow.
Client B arrives.
What happens?

Key Concepts

Packet conservation is a fundamental concept in
TCP’s congestion management

Get to equilibrium
• Slow Start

Do nothing to get out of equilibrium
• Good RTT Estimate

Adapt when equilibrium has been lost due to
other’s attempts to get to/stay in equilibrium
• Additive Increase/Multiplicative Decrease

The network reveals its own behavior

Key Concepts (next level down)

TCP probes the network for bandwidth, assuming
that loss signals congestion
The congestion window is managed to be additive
increase / multiplicative decrease

It took fast retransmit and fast recovery to get
there

Slow start is used to avoid lengthy initial delays
Ramp up to near target rate and then switch to
AIMD

