
CSE 461: Link State Routing

Link State Routing

Same assumptions/goals, but different idea than
DV:

Tell all routers the topology and have each
compute best paths
Two phases:
1. Topology dissemination (flooding)

- New News travels fast.
- Old News should eventually be forgotten

2. Shortest-path calculation (Dijkstra’s
algorithm)
- nlogn

Each router maintains link state database and
periodically sends link state packets (LSPs) to
neighbor

LSPs contain [router, neighbors, costs]
Each router forwards LSPs not already in its
database on all ports except where received

Each LSP will travel over the same link at most
once in each direction

Flooding is fast, and can be made reliable with
acknowledgments

Flooding

Example

LSP generated by X at T=0

X A

C B D

X A

C B D

X A

C B D

X A

C B D

T=0 T=1

T=2 T=3

Complications

When link/router fails need to remove old data.
How?

LSPs carry sequence numbers to determine new
data
Send a new LSP with cost infinity to signal a link
down

What happens if the network is partitioned and
heals?

Different LS databases must be synchronized

Shortest Paths: Dijkstra’s Algorithm

N: Set of all nodes
M: Set of nodes for which we think we have a
shortest path
s: The node executing the algorithm
L(i,j): cost of edge (i,j) (inf if no edge connects)
C(i): Cost of the path from s to i.
Two phases:

Initialize C(n) according to received link states
Compute shortest path to all nodes from s
• Link costs are symmetric, but does not immdly

imply that paths are symmetric

The Algorithm

// Initialization
M = {s} // M is the set of all nodes considered so far.
For each n in N - {s}

C(n) = L(s,n)

// Find Shortest paths
Forever {

Unconsidered = N-M
If Unconsidered == {} break
M = M + {w} such that C(w) is the smallest in Unconsidered
For each n in Unconsidered

C(n) = MIN(C(n), C(w) + L(w,n))
}

Open Shortest Path First (OSPF)

Most widely-used Link State protocol today
Basic link state algorithms plus many features:

Authentication of routing messages
Extra hierarchy: partition into routing areas
• Only bordering routers send link state

information to another area
–Reduces chatter.
–Border router “summarizes” network costs

within an area by making it appear as
though it is directly connected to all interior
routers

• Load balancing

Distance Vector Message Complexity

N: number of nodes in the system
M: number of links
D: diameter of network (longest shortest path)

Size of each update: N
Number of updates sent in one iteration: M
Number of iterations for convergence: D
Total message cost: N*M*D
Number of messages: M*D
Incremental cost per iteration: N*M, #messages: M

Link State Message Complexity

Each link state update size: d(i)
where d(i) is degree of node i

Number of messages per broadcast: M
Bytes per link state update broadcast: M*d(i)
Total messages across all link state updates: N*M
Total bytes across all link state updates: Σ M*d(i)

= M*M

Distance Vector vs. Link State

When would you choose one over the other?

Why have two protocols?

DV: “Tell your neighbors about the world.”
Easy to get confused
Simple but limited, costly and slow

• 15 hops is all you get. (makes it faster to loop to infinity)
• Periodic broadcasts of large tables
• Slow convergence due to ripples and hold down

LS: “Tell the world about your neighbors.”
Harder to get confused (“the nightly news”)
More expensive sometimes

• As many hops as you want
• Faster convergence (instantaneous update of link state

changes)
• Able to impose global policies in a globally consistent way

– load balancing

Cost Metrics

How should we choose cost?
To get high bandwidth, low delay or low loss?
Do they depend on the load?

Static Metrics
Hopcount is easy but treats OC3 (155 Mbps) and T1
(1.5 Mbps)
Can tweak result with manually assigned costs

Dynamic Metrics
Depend on load; try to avoid hotspots (congestion)
But can lead to oscillations (damping needed)

Based on load and link
Variation limited (3:1)
and change damped

Capacity dominates at
low load; we only try
to move traffic if high
load

225

N
ew

 m
et

ric
 (r

ou
tin

g
un

its
)

140

90
75

60

30

25% 50% 75% 100%

9.6-Kbps satellite link
9.6-Kbps terrestrial link
56-Kbps satellite link
56-Kbps terrestrial link Utilization

Revised ARPANET Cost Metric

Key Concepts

Routing uses global knowledge; forwarding is local

Many different algorithms address the routing
problem

We have looked at two classes: DV (RIP) and LS
(OSPF)

Challenges:
Handling failures/changes
Defining “best” paths
Scaling to millions of users

Dijkstra Example – After the flood

10

2 3

5

2

1

4 6

7

90

The Unconsidered.The Considered

* *

Dijkstra Example – Post
Initialization

* *

10

2 3

5

2

1

4 6

7

90

5

10
inf

inf

The Unconsidered.The Considered

Considering a Node

10

2 3

5

2

1

4 6

7

90

5

10
inf

inf

The Unconsidered.The Considered The Under Consideration (w).

Cost updates of 8,14, and 7

Pushing out the horizon

8

2 3

5

2

1

4 6

7

90

5 7

14

The Unconsidered.The Considered The Under Consideration (w).

Cost updates of 13

Next Phase

8

2 3

5

2

1

4 6

7

90

5 7

13

The Unconsidered.The Considered The Under Consideration (w).

Cost updates of 9

Considering the last node

8

2 3

5

2

1

4 6

7

90

5 7

9

The Unconsidered.The Considered The Under Consideration (w).

Dijkstra Example – Done

8

2 3

5

2

1

4 6

7

90

5 7

9

