Module 7
Routing Overview

John Zahorjan
zahorjan@cs.washington.edu
534 Allen Center

This Module

• Review of forwarding
• Overview of approaches
 • Distance Vector Routing
 • Link State Routing

△ Application
△ Presentation
△ Session
△ Transport
△ Network
△ Data Link
△ Physical
Routing: Full Duplex Links

Routing table

Routing as a Shortest Path Problem

- Routing table entries: [destination network, next hop router]
- To decide which router is on the next hop, want to find the shortest path from the router to the destination network's router
- We’ll first look at sequential solutions, then distributed
 - “Sequential”: full network topology information is available
 - “Distributed”: must distribute information and perform computation on each router
- We’ll first look at the single-destination / all-sources problem, then all-destinations / all-sources
- One thing to look for:
 - each router obtains a consistent view
 - forwards on shortest path
 - shortest paths don’t have loops!
First Approach: Iterative

- **Bellman-Ford Algorithm**

- **Iterative:**
 - At each step, update [cost, next hop] for every router based on [cost] at neighbors
 - Starting conditions:
 - [0, -] at destination
 - [\infty, -] at every other router

- **Running time: O(VE)**
 - V: number of vertices (routers)
 - E: number of edges (links)

Bellman-Ford Example

How long can it take to converge?
Second Approach: Greedy

- **Dijkstra’s Algorithm**

- Greedy:
 - Build the spanning tree by adding routers to the current spanning tree one at a time
 - Choose next the as-yet-unadded router whose distance to the destination is minimal
 - Starting conditions:
 - \([0,-]\) at destination
 - \([\infty,-]\) at every other router
 - Spanning tree is the destination router alone

- Running time: \(O(E \log V)\)
Dijkstra Example

How do we know this works?

Moving to the Internet

- Routing table reflects spanning tree from source to every destination
 - Not really a big change
 - Bellman-Ford: every destination is engaged in the procedure
 - Dijkstra: make the source the root, rather than the destination

- Have to distribute information
 - Bellman-Ford: neighbor information about current costs to each destination
 - Dijkstra: full topology/cost information

- The process is on-going
 - Not all routers boot at once

- Router/link failures can occur
 - Link cost data isn’t static