Last Time: Addresses Imply Location

- All 128.208 addresses are this way
- ...
This Lecture

IP Addressing
- Allocation and discovery
 - DHCP
 - ARP
 - NAT
- Hierarchy (prefixes, class A, B, C, subnets)

Address Allocation and Discovery

The yellow node boots. It has a MAC address.
- It needs an IP address.
- It needs to know to use router R3.
- R3 needs to discover the new host’s MAC address.

 DHCP is used.
 ARP is used.
Topic 1: Obtaining an IP address

- Old fashioned way: sysadmin configured each machine
 - E.g., a local file contained the IP address to use
 - Imagine deploying 50 new machines in one of the labs...

- Future fashioned way (IPV6): Stateless Autoconfiguration
 - Addresses are wide / plentiful
 - Form IPv6 address by concatenating “network’s address” (prefix) with your own MAC address
 - Learn “network address” portion from router

- Current (IPv4) way: Dynamic Host Configuration Protocol (DHCP)
 - Addresses are narrow (32-bits) / scarce
 - Have to hand them out carefully
 - Use a DHCP server that provides bootstrap info to hosts
 - Host’s IP address, gateway address, ...
 - An immediate problem: how does a host without an IP address communicate with the DHCP server?

The DHCP Problem

Host

DHCP Server

- The host doesn’t have an IP address
- The host doesn’t know the address of the DHCP server
- The host wants to contact the DHCP server
- We want to use IP packets to talk with the server
 - Why? Why not talk using link layer packets?

Solution: link and IP layer multicast
The DHCP Problem Solution

Host

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Source</th>
<th>Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet</td>
<td>Host's MAC address</td>
<td>FF:FF:FF:FF:FF:FF</td>
</tr>
<tr>
<td>IP</td>
<td>00:00:00:00</td>
<td>FF:FF:FF:FF:FF:FF</td>
</tr>
<tr>
<td>UDP</td>
<td>68</td>
<td>67</td>
</tr>
<tr>
<td>DHCP</td>
<td>RN32</td>
<td></td>
</tr>
</tbody>
</table>

DHCP Server

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Source</th>
<th>Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet</td>
<td>Server's MAC address</td>
<td>FF:FF:FF:FF:FF:FF</td>
</tr>
<tr>
<td>IP</td>
<td>Server's IP address</td>
<td>FF:FF:FF:FF:FF:FF</td>
</tr>
<tr>
<td>UDP</td>
<td>67</td>
<td>68</td>
</tr>
<tr>
<td>DHCP</td>
<td>RN32</td>
<td></td>
</tr>
</tbody>
</table>

(As always, the actual protocol is richer than what is shown here.)

- Client is responsible for all retransmissions. (Why?)
- What dangers are there for losing IP addresses?
Topic 2: Discovering MAC’s from IP’s

- Host has an IP (e.g., for the gateway). It needs a MAC address to send a frame to it.

- Solution: Address Resolution Protocol (ARP)

- Exploits the physical multicast of Ethernet

The DHCP Problem Solution

Host	Target host
Ethernet | **Ethernet**
Src: host’s MAC address | Src: server’s MAC address
ARP | **ARP**
My MAC is... | My MAC is...
My IP is... | Your MAC is...
(As always, the actual protocol is richer than what is shown here.)
Topic 3: Network Address Translation (NAT)

- Turns out that there aren’t all that many 32-bit strings (i.e., IP addresses)
 - The world needs more…
 - An individual network needs more…
 - You need more…
 - Your ISP will give you only one (using DHCP), but you want to connect five machines to the Internet

- NAT exploits *non-routable addresses* to let you build your own private network “behind the NAT box”
 - Non-routable addresses are, well, never routed
 - do not have to be globally unique (just locally unique)

- The NAT box substitutes its own IP address for outgoing packets, and the local address of the actual destination for incoming packets

NAT Overview

- Recall that IP addresses are 32-bits (e.g., 192.168.10.3)
- Recall that TCP addresses are IP addresses plus a port number
- These IP address ranges are “non-routable”:
 - 10.0.0.0 - 10.255.255.255
 - 172.16.0.0 - 172.31.255.255
 - 192.168.0.0 - 192.168.255.255
NAT and Peer-to-Peer (P2P)

- STUN (Simple Traversal of UDP through NATs)
 - Heuristic designed to discover “routable” address (NAT entry) for hosts behind NATs

Topic 4: IP Addresses

- Routing burden grows with size of an internetwork
 - Size of routing tables
 - Volume of routing messages
 - Amount of routing computation

- To scale to the size of the Internet, apply:
 - Hierarchical addressing
 - Use of structural hierarchy
 - Route aggregation
IP Addresses: Hierarchy

- Hierarchy is used for routing
 - IP addresses reflect some properties of location in topology
 - Interfaces on the same network share prefix
 - Local delivery in a single network doesn’t involve router
 - Routers advertise prefixes to each other
 - Unlike “flat” Ethernet addresses
 - Like hierarchical file names (e.g.,
 /homes/zahorjan/cse461/06au/m6.ppt).
 - What are the similarities / differences?

- Hierarchy is used for network management
 - Prefix administratively assigned (IANA or ISP)
 - Addresses globally unique
 - Full host IP assigned locally
 - Distributes burden over users

IPv4 Address Formats

- 32 bits written in “dotted quad” notation, e.g., 18.31.0.135
- Given an IP address, it’s easy to determine the network number
IPv6 Address Format

- 128 bits written in 16 bit hexadecimal chunks
- Still hierarchical, just more levels – roughly
 - World owner of this address range (e.g., IANA)
 - Backbone provider
 - ISP
 - End-client organization
 - Interface (host)

IPv4 Network Example

Network number: 128.96.0.0
128.96.0.15
H1
128.96.0.1
128.97.0.2
R1
Network number: 128.97.0.0
128.97.0.1
128.97.0.139
R2
128.98.0.1
H2
128.98.0.14
H3
Network number: 128.98.0.0
Internet Router Forwarding Routine: Take 1

- With bridging, it used to be “look up destination address to determine next hop”

- Now addresses have network and host portions:
 - **Host**: if destination network is the same as the host network, then deliver locally (without router). Otherwise send to the router
 - **Router**: look up destination network in routing table to find next hop and send to next router. If destination network is directly attached then deliver locally.

Take 2: Subnetting

- Split up one network number into multiple physical networks

- Helps allocation efficiency -- can hand out subnets

- Rest of internet does not see subnet structure
 - subnet is purely internal to network
 - aggregates routing info

<table>
<thead>
<tr>
<th>Network number</th>
<th>Host number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class B address</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Network number</th>
<th>Subnet ID</th>
<th>Host ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subnet mask (255.255.255.0)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Subnetted address
Updated Forwarding Routine

- Used to know network from address (class A, B, C)

- Now need to “search” routing table for right subnet
 - **Host**: easy, just substitute “subnet” for “network”
 - **Router**: search routing table for the subnet that the destination belongs to, and use that to forward as before
Take 3: CIDR (Supernetting)

- CIDR = Classless Inter-Domain Routing

- Generalize class A, B, C into prefixes of arbitrary length; now must carry prefix length with address

- Aggregate adjacent advertised network routes
 - e.g., ISP has class C addresses 192.4.16 through 192.4.31
 - Really like one larger 20 bit address class …
 - Advertise as such (network number, prefix length)
 - Reduces size of routing tables

- But IP forwarding is more involved
 - Based on Longest Matching Prefix operation

CIDR Example

- X and Y routes can be aggregated because they form a bigger contiguous range.

- But aggregation isn’t always possible
 - can only aggregate power of 2
IP Forwarding Revisited

- Routing table now contains routes to “prefixes”
 - IP address and length indicating what bits are fixed

- Now need to “search” routing table for longest matching prefix, only at routers
 - Search routing table for the prefix that the destination belongs to, and use that to forward as before
 - There can be multiple matches; take the longest prefix

- This is the IP forwarding routine used at routers.

Key Concepts

- Hierarchical address allocation helps routing scale
 - Technical Issues:
 - Addresses are constrained by topology
 - Advertise and compute routes for networks, not each host
 - Separate internet view of networks from local implementation via subnets
 - Keep host simple and let routers worry about routing
 - Network Administration Issue:
 - Distribute workload of assigning IP addresses to clients

- DHCP provides convenient management of host startup information

- ARP learns the mapping from IP to MAC address

- NAT hides local names behind a single global name