CSE/EE 461: Introduction to Computer Communications Networks Autumn 2007

Module 4 Bridging LANs

John Zahorjan zahorjan@cs.washington.edu 534 Allen Center

This Module: Bridging / Switching

- Focus:
 - What to do when one shared LAN isn't big enough?
- · Interconnecting LANs
 - Bridges and LAN switches
 - A preview of the Network layer

Application Presentation

Session

Transport

Network

Data Link

Physical

10/17/2007

The Common Theme: Limits of a LAN

- One shared LAN can limit us in terms of:
 - Distance
 - Number of nodes
 - Performance
- · How do we scale to a larger, faster network?
 - We must be able to interconnect LANs
 - Can't pass all packets by every host
 - Bridges/switches must make sensible choices about which outgoing links to place packets on
- For the system architectures we're most interested in, some packet buffering will take place
 - Store and forward

10/17/2007

First Realization: Bridges and Extended LANs

- · "Transparently" interconnect LANs with bridge
 - Receive frames from each LAN and forward to the other
 - Each LAN is its own collision domain; bridge isn't a repeater

10/17/2007

CSE/EE 461 07au

Learning Bridges

- · To optimize overall performance:
 - Shouldn't forward A B or C D, should forward A C and D B

- · How does the bridge know?
 - Learn who is where by observing source addresses and prune
 - Send
 - Forward using destination address; age for robustness

10/17/2007

Spanning Tree

- Compute ST with a bridge as root such that
 - Root forwards onto all of its outgoing ports
 - Other bridges forward TO the root if a frame is received on a port "further from the root", else they forward away from the root
 - Packet traversal: forwards (UP)* then (DOWN*)

10/17/2007

Spanning tree vs. learning

- Once the spanning tree is in place...
 - the bridge uses the regular learning algorithm to figure out which port(s) to forward / flood packet on
- Job of spanning tree algorithm is to disable some ports to eliminate cycles

10/17/2007

CSE/EE 461 07au

Spanning Tree Algorithm

- Radia Perlman; IEEE 802.1 spec; http://www1.cs.columbia.edu/~ji/F02/ir02/p44-
- Dynamic, distributed algorithm to compute spanning tree
 - Dynamic: robust against failures
 - Distributed:
 - needs no organization/management, but...
 - the usual complexities of "who knows what, when?" in distributed computations
 - All nodes must come to the same conclusions
 - Easy part: use some deterministic calculation (e.g., sorting)
 - Hard part: make sure everyone is working on the same data (or at least data that ends up giving the same result)
- Outline: Goal is to turn some bridge ports off
 - 1. Elect a root node for the tree
 - 2. Grow tree as shortest distances from the root
 - 3. Turn off ports that aren't on "best" paths

10/17/2007

Algorithm Overview

• Elect a root

- Each bridge has a unique id
 - e.g., B1, B2, B3
- Inform each node of the id's of all other nodes (sort of)
- Each picks the smallest node id as its idea of the root
- Et voila

Agree on a tree

- Select as designated bridge on each LAN the one:
 - that is closest to the root as that LAN's designated bridge
 - Has smallest id in case of distance ties

When done

 Each bridge forwards frames over each LAN on which it is the designated bridge

10/17/2007

CSE/EE 461 07au

How?

Initially:

- Each bridge knows what ports it has
- Each bridge currently believes that it is the root
 - It therefore believes it is responsible for forwarding packets to all of its connected LANs
- That's everything

• Bridges <u>send</u> configuration messages, containing:

- id for bridge sending the message
- id for what that bridge currently believes to be the root bridge
- distance (hops) from sending bridge to root bridge

Bridges <u>receive</u> configuration messages from immediate neighbors

- Each receiver keeps track of the <u>current best configuration</u> message for each port
- New information may change its idea of:
 - · who the root is
 - · its distance from the root
 - who is responsible for the LAN directly connected to one of its ports

10/17/2007

"Best Configuration"

- · Maintained per-port
- Goal:
 - have all bridges connected to a single LAN agree on which of them is responsible for it
 - Key: sorting (plus making sure they have the same information)
- · Rules for "best":
 - Identifies a root with a smaller ID (than current best)
 - Identifies the same root, but has a smaller hop count to it
 - Root id and hop count same, but sending bridge has a smaller id

10/17/2007

CSE/EE 461 07au

Algorithm More...

- When learn not designated bridge on LAN, stop forwarding configuration messages on it
 - in steady state, only designated bridges forward configuration messages
- Root bridge continues to send configuration messages periodically
- If a bridge does not receive any configuration messages during a period of time:
 - assumes topology has changed
 - starts generating configuration messages claiming to be root

10/17/2007

Algorithm Example

- Message format:
 - (root, dist-to-root, sending bridge)
- Sample message sequence to and from B3:
 - 1. B3 sends (B3, 0, B3) "to B2 and B5"
 - 2. B3 receives (B2, 0, B2) and (B5, 0, B5) and accepts B2 as root
 - 3. B3 sends (B2, 1, B3) to B5
 - 4. B3 receives (B1, 1, B2) and (B1, 1, B5) and accepts B1 as root
 - B3 could send (B1, 2, B3) but doesn't as its nowhere "best" B2 and B5 are better choices. so B3 is NOT a designated bridge
 - 6. B3 receives (B1, 1, B2) and (B1, 1, B5) again ... stable

B3 turns off data forwarding to LANs A and C

10/17/2007

CSE/EE 461 07au

Some other tricky details

- · Configuration information is aged
 - If the root fails a new one will be elected
- · Reconfiguration is damped
 - Adopt new spanning trees slowly to avoid temporary loops
- What can happen during reconfiguration?
 - Loops?
 - Frames lost?
 - Frames duplicated?

10/17/2007

LAN Switches

- · LAN switches are multi-port bridges
 - Modern, high performance form of bridged LANs
 - Looks like a hub, but frames are switched, not shared
 - Every host on a separate port, or can combine switches

10/17/2007

CSE/EE 461 07au

Limitations of Bridges/Switches

- · LAN switches form an effective small-scale network
 - Plug and play for real!
- Why can't we build a large network using bridges?
 - Little control over forwarding paths
 - Size of bridge forwarding tables grows with number of hosts
 - Broadcast traffic flows freely over whole extended LAN
 - Spanning tree algorithm limits reconfiguration speed
 - Poor solution for connecting LANs of different kinds

10/17/2007

Key Concepts

- We can overcome LAN limits by interconnection
 - Bridges and LAN switches
 - But there are limits to this strategy ...
- Next Topic: Routing and the Network layer
 - How to grow large and really large networks

10/17/2007