This Module’s Topics
Examples of Specific Protocols
1. Ethernet / IEEE 802.3
2. Wireless / IEEE 802.11

Relationship to the Protocol Stack

- Application
 - Up to the application
 - Encode/decode messages
- Presentation
 - Manage connections
- Session
 - Reliability, congestion control
- Transport
 - Routing
- Network
 - Framing, multiple access
- Link
 - Symbol coding, modulation
- Physical

Both protocols were designed to allow an evolving set of physical layer implementations (e.g., 802.11b, 802.11g, etc.).
Link layer (can) consists of logical link control (LLC – multiplexing, reliability) and medium access control (MAC – framing, addressing, access control).

We need…

- To define a policy for acquiring in the medium
 - Ethernet provides physical broadcast ⇒ want to avoid having more than one sender at a time
- To decide how much effort to put into reliability
 - Are all errors left to higher-layer protocols? Any?
- To define a frame format
 - What bits go where?
- To define an addressing scheme
 - How does sender name the intended receiver(s)?

Ethernet / 802.3

- Developed mid-1970’s at Xerox PARC (along with the mouse, the bit-mapped display, and the personal workstation).
- Ethernet goals:
 - Cheap
 - Reliable
 - Passive network – a cable. No active elements required.
 - Taps are simple enough to be "fail stop."
 - Distributed control – no central arbiter.
 - Statistical multiplexing.

Ethernet MAC

- The basic idea is to let a station send when it has something to send
 - We don’t take turns; we don’t make reservations
 - The Aloha network did just this
- The problem is that we’ll have collisions, resulting in corrupted data
- We like to reduce the time wasted by collisions, without sacrificing distribution / simplicity
Reliability

- How much effort should be put into reliability at this level?
- Hey, it's a wire, with simple (reliable) attachments.
 - If there is no collision, the odds are very high the frame will be received correctly.
 - Don't embed into the MAC the overhead of acknowledgments.
 - If there is a collision, the odds are not good that the frame will be received correctly.
 - There are no explicit ACKs, so assume the frame is lost in this case.

Upshot:
- Send until there is no collision (or until you've tried enough times that you give up).

Reducing Collision Overheads – CSMA/CD

- Carrier Sense Multiple Access (CSMA)
 - Listen to medium before sending and "defer" if the medium is sensed busy.
 - What collision scenarios does this eliminate?
 - Is it still possible to collide?
 - Is it likely?
- Collision Detection (CD)
 - A transmitting host also acts as a receiver.
 - Detect a collision when the bit read from the ether is not the same as the one being transmitted.
 - If a collision is detected, jam the ether so that all stations know there is a collision.
 - What are the benefits of CD?

Implementing CSMA

- What happens when current transmission ends?
 - "1-persistent": go ahead and send.
 - "p-persistent": a slotted time version of non-persistent.
 - Each slot, assuming no transmission is on-going, start transmitting with probability p.
 - Ideal: if N hosts want to transmit, p should be 1/N.
- By this definition, Ethernet is 1-persistent.
 - It's "optimistic"—let's assume I'm the only station waiting to transmit (N=1).

We'll see that it also has a mechanism that can be thought of as attempting to dynamically estimate N (and to set p=1/N).

Reacting to Collision Detection

- What happens when a collision occurs?
 - Ethernet takes a collision as a sign it has underestimated N (the number of contending stations).
 - Binary exponential backoff
 - A slot time is the maximum possible time between a host starting a transmission and all others hearing it.
 - (Obviously, this is a function of the length of the Ethernet)
 - If k consecutive collisions have occurred, pick at random a number of slots between 0 and 2^k-1 and backoff (wait) that long before trying again.
 - Binary exponential backoff has been proven stable in an idealized model.
 - If all of N stations always have something to send, useful utilization of the Ethernet goes to 1/e as N gets large.

Some Side Issues

- How does frame length affect efficiency?
- Why is there a minimum frame size?
 - How is it related to the maximum length of an Ethernet?
 - How is it related to the bandwidth?
- Modern Ethernets (100Mbps / 1Gbps / 10Gbps) look like this:

 ![Hub or Switch Diagram]

Why?

The Ethernet Frame / Addressing

- Preamble lets the receiver synch.
- Addresses are 6-bytes.
- Type field allows demultiplexing.
- Overloaded to be a length field in some modern variants.
- Minimum payload is 46-bytes; max is 1500.
 - Pad is necessary if the actual data < 46 bytes.
- You know what CRC is...
Ethernet (802.2) Addresses

- Each interface on an Ethernet has a unique address
 - Interface cards examine each frame as it goes by
 - If the destination address matches their own address, they save the frame and notify the host
 - (Interfaces can also be put into "promiscuous mode," where they save all frames)

- Moreover, each interface in the world has a unique address

- Addresses are 48 bits, written as sixteen hex digits
 - First 24 bits (4 million possibilities) identify a manufacturer (e.g., 3Com)
 - Last 24 bits are assigned by the manufacturer, so that all cards are unique
 - FF:FF:FF:FF:FF:FF is reserved as the broadcast address

- (Can you imagine other ways to assign addresses? Why is the one used attractive?)

Wireless / 802.11

- There is a lot of activity in the 802.11 world...
- We’ll consider here
 - 802.11b (up to 11Mbps), 802.11a (up to 54Mbps), 802.11g (up to 54Mbps) [802.11n (up to 300Mbps)]
 - Distributed Coordination Function (DCF) / infrastructure mode

- All frames to/from a host go through the AP
- AP is connected to a larger network (e.g., the Internet) and acts as a relay

802.11 Wireless Networks

- Frequency division multiplexing is used statically
 - Each AP is on a channel (e.g., 802.11b has 13 channels)
 - APs (typically) broadcast their service set ids (SSIDs)
 - Clients select an AP and associate with it
 - Association has a medium term lifetime – many, many frames, typically
 - Access to channels is through statistical multiplexing
 - How should this work?

Characteristics of Wireless

- The ability of the radio to correctly decode a frame is determined by the signal-to-interference-and-noise-ratio (SINR):
 - \[\frac{\text{received signal strength}}{\text{interference + noise}} > \beta \]

- The received signal strength is the transmitted strength attenuated by the materials the signal passes through, and affected by multipath
- A useful but very inaccurate model is
 \[\text{received strength} = \text{sent strength} \times d^{-\alpha} \]

- \(\alpha = 2 \) for free space
- \(\alpha = 3 \) to 4 for in-building

- Interference is the energy of other ongoing transmissions
- Noise is the energy generated by the receiving radio and other nearby sources (e.g., the computer’s power supply)

Wireless Reliability

- Unlike Ethernet, frames can be lost even if only one station is transmitting
 - in fact, that’s common
- 802.11 uses explicit receiver ACKs
- Time is "reserved" by each (data) frame for the ACK that should be coming back
 - (data) frames contain a duration field in the header
 - The duration is the time it will take to send the current frame, plus a short idle time, plus the time to send back the ACK
 - All stations hearing the current frame are required to remain silent until the duration time has elapsed
Basic MAC Protocol

- Carrier-sense
 - Defer if you sense a sufficiently high energy level in the air

- No collision detection
 - Transmission emanating from radio overpowers any incoming signal

- Explicit ACKs
 - If no ACK received in reserved time
 - Use a binary exponential backoff procedure to choose a random backoff time
 - Count down that time, pausing whenever you sense a transmission in the air
 - Re-transmit when your counter reaches 0

Modified ARQ

- To support this MAC level retry, the frame headers carry sequence numbers and a retry bit
 - Retry bit = 0 for first transmission of a frame, 1 for retries
 - Sequence number of each distinct frame must be distinct (until wraparound)
 - Allows receiver to detect (and throw away) duplicates
 - Elsewise, assume it’s a new frame and deliver up to other protocol layers

- NO concept / detection of missing frames
 - Sequence numbers are used only to detect duplicates
 - "Missing" sequence numbers have no meaning
 - Successive sequence numbers to a particular destination may be any number not used too recently.

ACK Reliability

- Both the original frame and the ACK must be received or re-transmissions will take place
- As we’ve seen, time is reserved for the ACK, to help increase the odds it is received
- Additionally, ACKs are transmitted at the lowest rates
 - Multiple transmission rates are supported
 - E.g., 802.11b has 1, 2, 5.5, and 11Mbps
 - Slower rates have a lower SNIR ratio for correct decoding

The Hidden Terminal Problem

- A source may precede a data/ACK exchange with a request-to-send/clear-to-send (RTS/CTS) exchange
 - The RTS carries a duration sufficient to cover the 4 frame exchange
 - With luck, it’s heard by all other stations within range of the source
 - The receiver responds with a CTS carrying the time required to cover the CTS/data/ACK
 - With luck, it’s heard by all stations within range of the receiver
 - If the CTS comes back, the source sends the data, in the normal way
- The specification does not dictate when to use RTS/CTS
 - It’s actually much less used than the book implies
- Typically, there is a large static frame size threshold, with RTS/CTS always used for frames larger than the threshold and never for those below

The Exposed Terminal Problem
Addressing

• 802.2 (48-bit) addresses are used
 – They’re assigned just like with Ethernet – 24 bits name manufacturer, then 24 bits assigned by the manufacturer to that card

• Up to four addresses are contained in the header
 – Source: the address of where the frame originated
 – Transmitter: the address of the station actually transmitting
 – Destination: address of the ultimate destination
 – Target: address of station that should take the frame off the air (e.g., the AP)

Frame Format

• Frames begin with a special bit pattern, sent at a low rate
• A zealous attempt has been made to keep frames as small as possible, leading to many frame types
• Here is a general idea of what they look like, though:

Other Considerations

• There is an ad hoc mode, allowing stations to talk directly to each other (without the concept of an AP)
• The spec defines a contention free infrastructure (AP) mode in which the AP basically polls the clients for data
 – This has perhaps never been implemented in any commodity hardware
• There is support for power management
 – Clients may turn off their radios for a while
 – When they come back on, there are frame exchanges defined for them to ask for any frames the AP may be buffering for delivery

Summary

• Let’s review the decisions made by Ethernet and 802.11:
 – Policy for acquiring in the medium
 • Ethernet: multiple access
 • 802.11: multiple access
 – How much effort to put into reliability
 • Ethernet: collision detect/ARQ, error detection/no ARQ
 • 802.11: error detection, ARQ (stop-and-wait)
 – To define an addressing scheme
 • Ethernet: source/dest 802.2 addresses
 • 802.11: 1-4 802.2 addresses
 – To define a frame format
 • Ethernet: max length (~1500 bytes); min length
 • 802.11: max length (~1500 bytes); many frame types/options (control and data frames)

A Quick Look At Alternatives

• Policy for acquiring in the medium
 – TDMA: wait your turn to send
 – Rings: a distinguished frame (“token”) is required before sending is allowed
 – Token is continuously circulated among all nodes
• How much effort to put into reliability
 – No error detection
 – Error correction (“forward error correction” (FEC))
 – Sliding window?
• To define an addressing scheme
 – Hierarchical numeric addresses (rather than flat)?
 – Properties rather than addresses (“Canon iP6200 printer”)?
• To define a frame format
 – Larger frames?
 – Control frames / no control frames?