
1

CSE/EE 461
HTTP / DNS / CDNs (/ Privacy)

2

Last Time …

• The Transport Layer

• Focus
– How does TCP share bandwidth?

• Topics
– AIMD

– Slow Start

– Fast Retransmit / Fast Recovery Physical

Data Link

Network

Transport

Session

Presentation

Application

2

3

This Lecture

• HTTP and the Web (but not HTML)

• DNS

• Content Distribution Networks (CDNs)

Physical

Data Link

Network

Transport

Session

Presentation

Application

4

Part 1: The Web

3

5

Web Protocol Stacks

• To view the URL http://server/page.html the client makes a TCP
connection to port 80 of the server, by it’s IP address, sends the
HTTP request, receives the HTML for page.html as the response,
repeats the process for inline images, and displays it.

Ethernet

IP

TCP

HTTP

apache

Ethernet

IP

TCP

HTTP

Netscape request

response

OS

kernel

user

space

serverclient

6

HTTP/HTML

• Original goal of the web: file sharing / viewing

• Big idea: display of content should be up to viewer, not author
– Data might be astronomical observations
– Client may or may not be able to run a graphical visualizer
– Data of many different types: plain text, formatted text, tables of values, images, etc.
– (Compare this idea with WYSWIG, e.g., Word)

• HTTP (Hyper Text Transfer Protocol) is the protocol used to communicate between
the browser and the server

• HTML (Hyper Text Markup Language) is the language for marking format marks in
text

– <p> means “start a new paragraph”
– xxx means “display xxx in bold”
– <i>italicize me</i>
– Etc.

4

7

HTTP

• HTTP was originally intended to support file fetch

• HTTP is a request-response protocol

– Client ⇒ Server: Give me file index.html

– Server ⇒ Client: Here it is…

• Like every other protocol we’ve seen, it defines a header, which is
used to communicate meta-data between the client and the server

– Client header: operation, URL, HTTP version, etc.
• GET /education/courses/cse461/07au/index.html HTTP /1.0

– Server header: result code, file metadata
• HTTP/1.0 200

8

HTTP Protocol Headers

• HTTP runs on top of TCP, which runs on top of IP
– So?

• HTTP headers are very flexible
– Expressed as text (ASCII)

– Keyword delimited fields, not position (mostly)

• First line IS position sensitive

• As always, need framing

– A blank line (CrLf) separates header from payload

5

9

Example Exchange

• GET /index.html HTTP/1.1
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1 ; en-US;
rv:1.8.0.8) Gecko/20061025 Firefox/1.5.0.8
Host: www.w3.org
Accept: text/plain, text/html

• HTTP/1.1 200 OK
Date: Thu, 30 Nov 2006 09:55:58 GMT
Server: Apache/1.3.37 (Unix) mod_pubcookie/3.3.2b
mod_ssl/2.8.28 OpenSSL/0.9.8a
Transfer-Encoding: chunked
Content-Type: text/html; charset=iso-8859-1
Content-Language: en 48a

48a
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transit ional//EN"
"http://www.w3.org/TR/REC-html40/loose.dtd">
<html>

10

Payload is typed (MIME types)

- Multi-part Internet Mail Exchange (MIME) types
- text/plain

- text/html

- application/msword

- application/octet-stream

- img/jpeg

- audio/mpeg

- video/quicktime

- multipart/encrypted

6

11

multipart/encrypted

Content-Type: multipart/encrypted; protocol="TYPE/STYPE";
boundary="Encrypted Boundary"

--Encrypted Boundary
Content-Type: TYPE/STYPE

CONTROL INFORMATION for protocol "TYPE/STYPE" would be
here

--Encrypted Boundary
Content-Type: application/octet-stream

Content-Type: text/plain; charset="us-ascii"

12

HTTP/HTML Recap

• Original idea of HTTP/HTML was to support fetch and display of
remote data

– Everyone is a publisher, everyone is their audience

• Original vision was that object being fetched is a file

– Modified to allow dynamic content: pages generated on-the-fly
• Example: Amazon pages

– “cgi” (common gateway interface) means a program that is run because
of an page fetch request given to a web server

– “server side include” is a cruder form of server-side dynamic content
• http://www.cs.washington.edu/education/courses/cse461/07au/index.shtml

– Applets / Javascript are dynamic content, but running on client side

– Many more modifications to the original idea have evolved over time

7

13

Improving Performance #1: Caching

• Caches can be (and are) deployed in three places:

– The client

• The browser keeps a cache of recently viewed pages

– Avoid network latency/overhead

– The server

• Avoid disk IO

– The network

• Proxy caches intercept HTTP requests and return cached page

• Typically deployed between local network(s) and ISP

– E.g., a UW proxy cache

• Both client and server can influence if / how long a page is cached

– Server: cacheable/non-cacheable, expiration time

– Client: browser settings for how often to check for page changed

14

How Effective Is Caching?

8

15

Why?

• Page popularity follows
Zipf’s law

– Nth most popular page is
accessed with frequency
proportional to 1/N

– “Heavy tail” of this
distribution means there
are a lot of pages not
visited by many clients

16

Improving Performance #2: HTTP Protocol Tweak

GET index.html

GET ad.gif

GET logo.gif

9

17

HTTP Request/Response in Action

• Problem is that:

– Web pages are made up of many files

• Most are very small (< 10k)

– files are mapped to connections

• For each file

– Setup/Teardown

• Time-Wait table bloat

– 2RTT “first byte” latency

– Slow Start+ AIMD Congestion
Avoidance

• The goals of HTTP and TCP protocols
are not aligned.

– Implications

18

TCP Behavior for Short Connections
Over Slow Networks

RTT=70ms

10

19

HTTP 1.1: Persistent Connections

• Bright Idea: Use one TCP connection for multiple page downloads
(or just HTTP methods)

• Q: What are the advantages?

• Q: What are the disadvantages?

– Application layer multiplexing

GET index.html GET ad.gif …

20

HTTP/1.1

11

21

Effect of Persistent HTTP

Image size=2544

Image size=45566

22

Part 2: The Domain Name System

12

23

Names and Addresses

• Names are identifiers for objects/services (high level)

• Addresses are locators for objects/services (low level)

• Binding is the process of associating a name with an address

• Resolution is the process of looking up an address given a name

• But, addresses are really lower-level names; many levels used

John Zahorjan

534 Paul G. Allen Center

University of Washington

37¢

name

address

24

Internet Hostnames

• Hostnames are human-readable identifiers for end-systems based
on an administrative hierarchy

– peshastin.cs.washington.edu is my desktop machine

• IP addresses are a fixed-length binary encoding for end-systems
based on their position in the network

– 128.208.2.83 is peshastin’s IP address

• Original name resolution: HOSTS.TXT

• Current name resolution: Domain Name System (DNS)

13

25

Domain Name System (DNS)

• Designed in the mid ‘80s

• Namespace is hierarchical
– Decentralized administration

• e.g., *.cs.washington.edu managed by CSE

• Name service (DNS) is distributed
– Allows much better scaling of data structures

• e.g., peshastin.cs.washington.edu

• Resolution is by query/response
– With replicated servers for redundancy
– With heavy use of caching for performance

26

DNS Hierarchy

edu

lcs

mit

auorgmilcom

ai

• “dot” is the root of the hierarchy

• Top levels now controlled by ICANN
• Lower level control is delegated

• Usage governed by conventions

• FQDN = Fully Qualified Domain Name

…

14

27

DNS Distribution

• Data managed by zones that contain resource records

– Zone is a complete description of a portion of the namespace

– e.g., all hosts and addresses for machines in washington.edu with
pointers to subdomains like cs.washington.edu

• One or more nameservers manage each zone

– Zone transfers performed between nameservers for consistency

– Multiple nameservers provide redundancy

• Client resolvers query nameservers for specified records

– Multiple messages may be exchanged per DNS lookup to navigate the
name hierarchy (coming soon)

28

DNS Lookups/Resolution

• DNS queries/responses
carried on UDP port 53

Root
name
server

Princeton
name
server

CS
name
server

Local
name
server

Client

1
cicada.cs.princeton.edu

192.12.69.60
8

cicada.cs.prin
ceton.edu

prin
ceton.edu, 1

28.196.128.233

cicada.cs.princeton.edu

cicada.cs.princeton.edu,

192.12.69.60

cicada.cs.princeton.edu

cs.princeton.edu, 192.12.69.5

2

3

4

5

6

7

15

29

Hierarchy of Nameservers

Root

name server

Princeton

name server

Cisco

name server

CS

name server

EE

name server

…

…

30

DNS Bootstrapping

• Need to know IP addresses of root servers before we can make any
queries

• Addresses for 13 root servers ([a-m].root-servers.net) handled via
initial configuration (named.ca file)

• To avoid overloading roots, heavy use of caching (at all levels)

– Like web pages, cache entries are timed out

– DNS also caches negative entries!

• Mistyped names are the most frequent single request to root
servers.

16

31

Part 3: Content Distribution Networks

32

CDNs

• Imagine someone on campus fetches
www.nytimes.com/2006/12/04/technology/04adcol.html

• It benefits both the UW and the NYT if that page is cached at the UW

– UW pays less for bandwidth to request page

– NYT pays less for bandwidth/servers to deliver the page

• But

– NYT can’t rely on everyone being behind an effective cache, and..

– NYT wants to be able to customize its content

• Basic idea of CDNs:

– Push content to servers operating near clients

• E.g., Akamai

17

33

Customization (Part 1)

• Client may want to customize her view of NYT
– Show me articles about Chicago at the top of the page

– Show me weather for Chicago

– Etc.

• The client’s customization options need to be stored
somewhere
– Straightforward: NYT servers keep track

– Better: push the customization information to the client, and let
the browser supply it with each request

• This is the motivation for browser cookies

34

Back to CDNs

• Uniform Resource Locators (URLs) begin with a host name
– www.nytimes.com/2006/12/04/technology/04adcol.html

• Host is www.nytimes.com

• Requested file is /2006/12/04/technology/04adcol.html

• Web pages embed links to other pages

– Example:

• Key idea: use DNS to direct fetch of content (like images) to CDN
servers

– graphics10.nytimes.com is a CDN server, not one on the NYT local network

18

35

DNS & CDNs

$ dig www.nytimes.com
;; ANSWER SECTION:
www.nytimes.com. 294 IN A 199.239.137.245
www.nytimes.com. 294 IN A 199.239.136.200
www.nytimes.com. 294 IN A 199.239.136.245
www.nytimes.com. 294 IN A 199.239.137.200

$ dig graphics10.nytimes.com
;; ANSWER SECTION:
graphics10.nytimes.com. 300 IN CNAME graphics8.nytimes.com.
graphics8.nytimes.com. 300 IN CNAME graphics478.nytimes.com.edgesuite.net.
graphics478.nytimes.com.edgesuite.net. 5495 IN CNAME a1116.x.akamai.net.
a1116.x.akamai.net. 20 IN A 72.246.103.40
a1116.x.akamai.net. 20 IN A 72.246.103.59

36

Future Evolution of the DNS

• Design constrains us in two major ways that are
increasingly less appropriate

• Static host to IP mapping
– What about mobility (Mobile IP) and dynamic address

assignment (DHCP)

• Location-insensitive queries
– What if I don’t care what server a Web page comes from, as long

as it’s the right page?

– e.g., a yahoo page might be replicated

19

37

Akamai

• Use the DNS to effect selection of a nearby Web cache

• Leverage separation of static/dynamic content

• Beware DNS caching

Nearby

Cache

Server

DNS servers

for akamai.com

client

1

2
3

456

38

Part 4: Privacy

• What is your browser supplying to the server on each request?

– Your IP address

– Cookies

• What are servers recording?

• What if many different servers shared information about your
habits?

• What if a CDN company fronted for many, many companies?

20

39

Some statistics from
www.cs.washington.edu

40

21

41

42

22

43

44

23

45

