
1

CSE/EE 461 – Module 12

TCP End-to-End

CSE/EE 461, Autumn 2007 M12.2

This Time

• End-to-end considerations for TCP
1. How is connect() different from send(SYN)?

2. Concurrency / blocking issues

3. What does receiver do?

4. What does sender do?

• When should data be sent?

• When should it be resent?

• When should it conclude connectivity
has been lost? Physical

Data Link

Network

TCP

Session

Presentation

Application

2

CSE/EE 461, Autumn 2007 M12.3

1. connect() vs. send(SYN)

• Q: Is connect() the same thing as send(syn) (if the
interface allowed the latter)?

A: No. (How are they different?)

App

TCP

App

TCP

CSE/EE 461, Autumn 2007 M12.4

2. Concurrency and blocking

• Protocol implementation involves a lot of concurrency
– E.g., (S1) sending app thread adds to send buffer; (S2) sending

TCP thread removes from buffer and sends; (R1) receving TCP
thread puts in buffer; (R2) receiving app reads from buffer

• Whether or not the app thread is blocked is an
important part of the semantics
– Why should app thread block on connect()?

– Why shouldn’t it block on send()?

• Why should it block on send()?

– Must receive() be blocking?

– Must close() be blocking?

3

CSE/EE 461, Autumn 2007 M12.5

Socket Semantics vs. Application
Architecture

• The application knows best what semantics it needs

– Suppose your application establishes a data connection and a control connection
to some peer

– Can’t do a read() from either one without ignoring the other

• One way to get around blocking semantics at lower level: spawn more
threads, and synchronize as necessary at the user level

• Problem: performance

• “Solution”: Most interfaces provide some form of non-blocking
mechanism

– Usually you can:

• Ask if some operation would block or not (poll)

• Wait for any of a number of distinct events to happen (select)

• A half-way measure: often you can specify a timeout for how long the
thread should block (e.g., receive(250))

CSE/EE 461, Autumn 2007 M12.6

3. What does the receiver do?

App

TCP

App

TCP

Seqno = s

1. Under what conditons should the receiver send

back an ACK at all?
2. When it does, what should the ACK seqno be?
3. (What does an ACK tell the sender?)

4

CSE/EE 461, Autumn 2007 M12.7

What should the receiver do?

• General philosophy:
– keep receiver as simple as possible

– ACKs are the primary feedback the sender has to work with

• With that in mind:
– Don’t ACK ACK’s. (What happens if you do?)

– Do ACK everything else.

• Receiver must ACK already seen data…

• Many possible choices for what ACK should send back
– TCP: seqno of first byte not yet received

• Can TCP send a segment with no data bytes?
– What should happen?

CSE/EE 461, Autumn 2007 M12.8

4. What does the sender do?

App

TCP

App

TCP

a) Should it send as soon as possible?

• Why might it be a good idea to wait?

b) When it sends, how long should the retry timeout be?

• Problem with too short? too long?

c) When should it give up?

5

CSE/EE 461, Autumn 2007 M12.9

a) Send as soon as possible?

• “Silly window” problem
– Reminder: Effective Window =

Receiver advertised window –
(LastByteSent – LastByteAcked)

• Suppose the sender transmits a small frame for some reason.
• The ACK for that frame opens the effective window by its size

• The sender sends an equally small segment

• Etc…

• Want to avoid this!

• Either don’t send small segments, or

• Don’t open window by a small amount

CSE/EE 461, Autumn 2007 M12.10

a) Send as soon as possible?

• Possible receiver side approaches:
– Could use a timeout at receiver

• Send an ACK at most once per timeout?

– Simpler: if window goes to zero, don’t advertise an open
window until you have an MSS (maximum segment size)
available

• Possible sender side approaches:
– Could use a sender timeout

– Could use a Nagle’s Algorithm (self-clocking)

6

CSE/EE 461, Autumn 2007 M12.11

Nagle’s Algorithm

send() {

if both available data and eff window ≥ MSS {

send MSS bytes

} else if lastByteSent – lastByteAcked > 0 {

// expecting another ACK soon -- don’t send

} else {

send min(available data, eff window) now

}

}

CSE/EE 461, Autumn 2007 M12.12

b) Deciding When to Retransmit

• How do you know when a packet has been lost?
(Note: It’s a little more complicated than this code…)

do {
send(p);
wait(t);

} while (!p.acked)

• How long should the timer t be?
– Too big: inefficient (large delays ⇒ poor use of bandwidth)

– Too small: may retransmit unnecessarily (causing extra traffic)

– A good retransmission timer is important for good performance

• Right timer is based on the round trip time (RTT)
– Which varies greatly in the wide area (path length and queuing)

7

CSE/EE 461, Autumn 2007 M12.13

b) Setting the Retransmission Timeout

• Boils down to estimating RTT

• Why not EstimatedRTT = (Sum of SampleRTT’s) / N?

• The straightforward approach:
– for each packet, note time sent and time ACK received (RTT sample)
– compute RTT samples and average recent samples for timeout

EstimatedRTT = (1-g) (EstimatedRTT) + g(SampleRTT)
0 ≤ g ≤ 1

– this is an exponentially-weighted moving average (low pass filter) that
smoothes the samples with a gain of g

• big g can be jerky, but adapts quickly to change

• small g can be smooth, but slow to respond
• typically, g = .1 or .2 ⇒ stability is more important than precision

– (lousy estimate right now does more damage than so-so estimate right now,
followed by better one a little later)

CSE/EE 461, Autumn 2007 M12.14

Original TCP (RFC793) retransmission
timeout algorithm

• Use EWMA to estimate RTT:

EstimatedRTT = (1-g) (EstimatedRTT) + g(SampleRTT)

0 ≤ g ≤ 1, usually g = .1 or .2

• Conservatively set timeout to small multiple (2x) of the estimate

Retransmission Timeout = EstimatedRTT + EstimatedRTT

• Why the ‘+ EstimatedRTT’ ?
– Better to wait “too long” than not long enough.

8

CSE/EE 461, Autumn 2007 M12.15

Jacobson/Karels Algorithm

• Replace “+ EstimatedRTT ” with measured variation in RTT

1. Compute a sample deviation statistic
– DevRTT = (1-b)*DevRTT + b*|SampledRTT - EstimatedRTT|

• typically, b = .25

2. Set timeout interval as:
– retransmission timeout = EstimatedRTT + k * DevRTT

• k is generally set to 4

• timeout =~ EstimatedRTT when variance is low (estimate is good)
– timeout quickly moves away from EstimatedRTT (4x!) when the

variance is high (estimate is bad)

CSE/EE 461, Autumn 2007 M12.16

Karn/Partridge Algorithm

• Problem: RTT for retransmitted packets ambiguous

• Solution: Don’t measure RTT for retransmitted packets
– Problem: RTT not updated when timeouts occurring

– Approach: use backoff on timeout until an xmit succeeds with retransmission

Sender Receiver

Original transmission

ACK

S
a

m
p

le
R

T
T

Retransmission

Sender Receiver

Original transmission

ACK

S
a

m
p

le
R

T
T

Retransmission

9

CSE/EE 461, Autumn 2007 M12.17

c) When do we give up?

RFC 1122 (Requirements for Internet Hosts)

The following procedure MUST be used to handle excessive retransmissions of
data segments:

• There are two thresholds R1 and R2 measuring the amount of retransmission that has occurred for

the same segment.

• When the number of transmissions of the same segment reaches or exceeds threshold R1, pass

negative advice to the IP layer, to trigger dead-gateway diagnosis.

• When the number of transmissions of the same segment reaches a threshold R2 greater than R1,

close the connection.

• An application MUST be able to set the value for R2 for a particular connection. TCP SHOULD

inform the application of the delivery problem (unless such information has been disabled by the

application; see Section 4.2.4.1), when R1 is reached and before R2.

• The value of R1 SHOULD correspond to at least 3 retransmissions, at the current RTO. The value

of R2 SHOULD correspond to at least 100 seconds.

