CSE/EE 461 — Module 12

TCP End-to-End

This Time

End-to-end considerations for TCP

1.

How is connect() different from send(SYN)?

2. Concurrency / blocking issues
3.
4. What does sender do?

What does receiver do?

e  When should data be sent?
e  When should it be resent?

e  When should it conclude connectivity
has been lost?
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1. connect() vs. send(SYN)

* Q:Is connect() the same thing as send(syn) (if the
interface allowed the latter)?

App App

TCP TCP

A:No. (How are they different?)
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2. Concurrency and blocking

* Protocol implementation involves a lot of concurrency

- E.g., (S1) sending app thread adds to send buffer; (S2) sending
TCP thread removes from buffer and sends; (R1) receving TCP
thread puts in buffer; (R2) receiving app reads from buffer

* Whether or not the app thread is blocked is an
important part of the semantics
— Why should app thread block on connect()?
— Why shouldn’t it block on send()?
* Why should it block on send()?
— Must receive() be blocking?
— Must close() be blocking?
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Socket Semantics vs. Application
Architecture

The application knows best what semantics it needs

— Suppose your application establishes a data connection and a control connection
to some peer

- Can’t do a read() from either one without ignoring the other

* One way to get around blocking semantics at lower level: spawn more
threads, and synchronize as necessary at the user level
® Problem: performance

e “Solution”: Most interfaces provide some form of non-blocking
mechanism
— Usually you can:
® Ask if some operation would block or not (poll)
¢ Wait for any of a number of distinct events to happen (select)

¢ A half-way measure: often you can specify a timeout for how long the
thread should block (e.g., receive( 250)[;
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3. What does the receiver do?

App App

TCP TPt LLLLL

m 1. Under what conditons should the receiver send

back an ACK at all?
2. When it does, what should the ACK segno be?
3. (What does an ACK tell the sender?)
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What should the receiver do?

General philosophy:
— keep receiver as simple as possible
— ACKs are the primary feedback the sender has to work with

With that in mind:
- Don't ACK ACK’s. (What happens if you do?)
- Do ACK everything else.
® Receiver must ACK already seen data...

¢ Many possible choices for what ACK should send back
— TCP: seqno of first byte not yet received

Can TCP send a segment with no data bytes?
— What should happen?
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4. What does the sender do?

App App
] [
0 []

7 TCP Tep A LLLLT]
m a) Should it send as soon as possible?

Why might it be a good idea to wait?

b)  When it sends, how long should the retry timeout be?
Problem with too short? too long?

c) When should it give up?
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a) Send as soon as possible?

e “Silly window” problem

— Reminder: Effective Window =
Receiver advertised window —
(LastByteSent — LastByteAcked)

® Suppose the sender transmits a small frame for some reason.
¢ The ACK for that frame opens the effective window by its size
¢ The sender sends an equally small segment
e Etc...

¢ Want to avoid this!
¢ Either don’t send small segments, or
¢ Don’t open window by a small amount
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a) Send as soon as possible?

* Possible receiver side approaches:
— Could use a timeout at receiver
* Send an ACK at most once per timeout?

— Simpler: if window goes to zero, don’t advertise an open
window until you have an MSS (maximum segment size)
available

* Possible sender side approaches:
— Could use a sender timeout
— Could use a Nagle’s Algorithm (self-clocking)
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Nagle’s Algorithm

send() {
if both available data and eff window > MSS{
send MSS bytes
} else if lastByteSent — lastByteAcked >0 {
/I expecting another ACK soon -- don’t send
} else {
send min(available data, eff window) now
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b) Deciding When to Retransmit

¢ How do you know when a packet has been lost?
(Note: 1t’s a little more complicated than this code...)

do {
send(p);
wait(t);

} while (!p.acked)

e How long should the timer t be?
— Too big: inefficient (large delays = poor use of bandwidth)
— Too small: may retransmit unnecessarily (causing extra traffic)
— A good retransmission timer is important for good performance

¢ Right timer is based on the round trip time (RTT)
— Which varies greatly in the wide area (path length and queuing)
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b) Setting the Retransmission Timeout

* Boils down to estimating RTT

* Why not EstimatedRTT = (Sum of SampleRTT’s) / N?

® The straightforward approach:
— for each packet, note time sent and time ACK received (RTT sample)
- compute RTT samples and average recent samples for timeout

EstimatedRTT = (1-g) (EstimatedRTT) + g(SampleRTT)
0<sg=s 1
— this is an exponentially-weighted moving average (low pass filter) that
smoothes the samples with a gain of g
® big ¢ can be jerky, but adapts quickly to change
e small g can be smooth, but slow to respond

e typically, g =.1 or .2 = stability is more important than precision

- ﬁlousy estimate right now does more damage than so-so estimate right now,
ollowed by better one a little later)
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Original TCP (RFC793) retransmission
timeout algorithm

e Use EWMA to estimate RTT:

EstimatedRTT = (1-g) (EstimatedRTT) + g(SampleRTT)
0<g< 1, usuallyg=.lor.2

¢ Conservatively set timeout to small multiple (2x) of the estimate

Retransmission Timeout = EstimatedRTT + EstimatedRTT

* Why the “+ EstimatedRTT"  ?
— Better to wait “too long” than not long enough.
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Jacobson/Karels Algorithm

Replace “+ EstimatedRTT ” with measured variation in RTT

1. Compute a sample deviation statistic
— DevRTT =(1-b)*DevRTT + b*|SampledRTT - EstimatedRTT]|
e typically, b = .25

N

Set timeout interval as:
— retransmission timeout = EstimatedRTT + k * DevRTT
e kis generally set to 4

timeout =~ EstimatedRTT when variance is low (estimate is good)

— timeout quickly moves away from EstimatedRTT (4x!) when the
variance is high (estimate is bad)
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Karn/Partridge Algorithm

e Problem: RTT for retransmitted packets ambiguous
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* Solution: Don’t measure RTT for retransmitted packets
— Problem: RTT not updated when timeouts occurring
— Approach: use backoff on timeout until an xmit succeeds with retransmission
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c) When do we give up?

RFC 1122 (Requirements for Internet Hosts)

The following procedure MUST be used to handle excessive retransmissions of
data segments:

» There are two thresholds R1 and R2 measuring the amount of retransmission that has occurred for
the same segment.

*  When the number of transmissions of the same segment reaches or exceeds threshold R1, pass
negative advice to the IP layer, to trigger dead-gateway diagnosis.

*  When the number of transmissions of the same segment reaches a threshold R2 greater than R1,
close the connection.

» An application MUST be able to set the value for R2 for a particular connection. TCP SHOULD
inform the application of the delivery problem (unless such information has been disabled by the
application; see Section 4.2.4.1), when R1 is reached and before R2.

» The value of R1 SHOULD correspond to at least 3 retransmissions, at the current RTO. The value
of R2 SHOULD correspond to at least 100 seconds.
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