CSE/EE 461 — Module 12

TCP End-to-End

This Time

End-to-end considerations for TCP

1.

How is connect() different from send(SYN)?

2. Concurrency / blocking issues
3.
4. What does sender do?

What does receiver do?

e When should data be sent?
e When should it be resent?

e When should it conclude connectivity
has been lost?

CSE/EE 461, Autumn 2007

Application
Presentation

Session
Network
Data Link
Physical

M12.2

1. connect() vs. send(SYN)

* Q:Is connect() the same thing as send(syn) (if the
interface allowed the latter)?

App App

TCP TCP

A:No. (How are they different?)

CSE/EE 461, Autumn 2007 M12.3

2. Concurrency and blocking

* Protocol implementation involves a lot of concurrency

- E.g., (S1) sending app thread adds to send buffer; (S2) sending
TCP thread removes from buffer and sends; (R1) receving TCP
thread puts in buffer; (R2) receiving app reads from buffer

* Whether or not the app thread is blocked is an
important part of the semantics
— Why should app thread block on connect()?
— Why shouldn’t it block on send()?
* Why should it block on send()?
— Must receive() be blocking?
— Must close() be blocking?

CSE/EE 461, Autumn 2007 M12.4

Socket Semantics vs. Application
Architecture

The application knows best what semantics it needs

— Suppose your application establishes a data connection and a control connection
to some peer

- Can’t do a read() from either one without ignoring the other

* One way to get around blocking semantics at lower level: spawn more
threads, and synchronize as necessary at the user level
® Problem: performance

e “Solution”: Most interfaces provide some form of non-blocking
mechanism
— Usually you can:
® Ask if some operation would block or not (poll)
¢ Wait for any of a number of distinct events to happen (select)

¢ A half-way measure: often you can specify a timeout for how long the
thread should block (e.g., receive(250)[;

CSE/EE 461, Autumn 2007 M12.5

3. What does the receiver do?

App App

TCP TPt LLLLL

m 1. Under what conditons should the receiver send

back an ACK at all?
2. When it does, what should the ACK segno be?
3. (What does an ACK tell the sender?)

CSE/EE 461, Autumn 2007 M12.6

What should the receiver do?

General philosophy:
— keep receiver as simple as possible
— ACKs are the primary feedback the sender has to work with

With that in mind:
- Don't ACK ACK’s. (What happens if you do?)
- Do ACK everything else.
® Receiver must ACK already seen data...

¢ Many possible choices for what ACK should send back
— TCP: seqno of first byte not yet received

Can TCP send a segment with no data bytes?
— What should happen?

CSE/EE 461, Autumn 2007 M12.7

4. What does the sender do?

App App
] [
0 []

7 TCP Tep A LLLLT]
m a) Should it send as soon as possible?

Why might it be a good idea to wait?

b) When it sends, how long should the retry timeout be?
Problem with too short? too long?

c) When should it give up?

CSE/EE 461, Autumn 2007 M12.8

a) Send as soon as possible?

e “Silly window” problem

— Reminder: Effective Window =
Receiver advertised window —
(LastByteSent — LastByteAcked)

® Suppose the sender transmits a small frame for some reason.
¢ The ACK for that frame opens the effective window by its size
¢ The sender sends an equally small segment
e Etc...

¢ Want to avoid this!
¢ Either don’t send small segments, or
¢ Don’t open window by a small amount

CSE/EE 461, Autumn 2007 M12.9

a) Send as soon as possible?

* Possible receiver side approaches:
— Could use a timeout at receiver
* Send an ACK at most once per timeout?

— Simpler: if window goes to zero, don’t advertise an open
window until you have an MSS (maximum segment size)
available

* Possible sender side approaches:
— Could use a sender timeout
— Could use a Nagle’s Algorithm (self-clocking)

CSE/EE 461, Autumn 2007 M12.10

Nagle’s Algorithm

send() {
if both available data and eff window > MSS{
send MSS bytes
} else if lastByteSent — lastByteAcked >0 {
/I expecting another ACK soon -- don’t send
} else {
send min(available data, eff window) now

CSE/EE 461, Autumn 2007 M12.11

b) Deciding When to Retransmit

¢ How do you know when a packet has been lost?
(Note: 1t’s a little more complicated than this code...)

do {
send(p);
wait(t);

} while (!p.acked)

e How long should the timer t be?
— Too big: inefficient (large delays = poor use of bandwidth)
— Too small: may retransmit unnecessarily (causing extra traffic)
— A good retransmission timer is important for good performance

¢ Right timer is based on the round trip time (RTT)
— Which varies greatly in the wide area (path length and queuing)

CSE/EE 461, Autumn 2007 M12.12

b) Setting the Retransmission Timeout

* Boils down to estimating RTT

* Why not EstimatedRTT = (Sum of SampleRTT’s) / N?

® The straightforward approach:
— for each packet, note time sent and time ACK received (RTT sample)
- compute RTT samples and average recent samples for timeout

EstimatedRTT = (1-g) (EstimatedRTT) + g(SampleRTT)
0<sg=s 1
— this is an exponentially-weighted moving average (low pass filter) that
smoothes the samples with a gain of g
® big ¢ can be jerky, but adapts quickly to change
e small g can be smooth, but slow to respond

e typically, g =.1 or .2 = stability is more important than precision

- ﬁlousy estimate right now does more damage than so-so estimate right now,
ollowed by better one a little later)

CSE/EE 461, Autumn 2007 M12.13

Original TCP (RFC793) retransmission
timeout algorithm

e Use EWMA to estimate RTT:

EstimatedRTT = (1-g) (EstimatedRTT) + g(SampleRTT)
0<g< 1, usuallyg=.lor.2

¢ Conservatively set timeout to small multiple (2x) of the estimate

Retransmission Timeout = EstimatedRTT + EstimatedRTT

* Why the “+ EstimatedRTT" ?
— Better to wait “too long” than not long enough.

CSE/EE 461, Autumn 2007 M12.14

Jacobson/Karels Algorithm

Replace “+ EstimatedRTT ” with measured variation in RTT

1. Compute a sample deviation statistic
— DevRTT =(1-b)*DevRTT + b*|SampledRTT - EstimatedRTT]|
e typically, b = .25

N

Set timeout interval as:
— retransmission timeout = EstimatedRTT + k * DevRTT
e kis generally set to 4

timeout =~ EstimatedRTT when variance is low (estimate is good)

— timeout quickly moves away from EstimatedRTT (4x!) when the
variance is high (estimate is bad)

CSE/EE 461, Autumn 2007 M12.15

Karn/Partridge Algorithm

e Problem: RTT for retransmitted packets ambiguous

Sender Receiver Sender Receiver

¥i

Orig;,
i)
na/ [rans,m.s X
Sion

R
etrans Miss;,
on

SampleR TT
SampleR TT

* Solution: Don’t measure RTT for retransmitted packets
— Problem: RTT not updated when timeouts occurring
— Approach: use backoff on timeout until an xmit succeeds with retransmission

CSE/EE 461, Autumn 2007 M12.16

c) When do we give up?

RFC 1122 (Requirements for Internet Hosts)

The following procedure MUST be used to handle excessive retransmissions of
data segments:

» There are two thresholds R1 and R2 measuring the amount of retransmission that has occurred for
the same segment.

* When the number of transmissions of the same segment reaches or exceeds threshold R1, pass
negative advice to the IP layer, to trigger dead-gateway diagnosis.

* When the number of transmissions of the same segment reaches a threshold R2 greater than R1,
close the connection.

» An application MUST be able to set the value for R2 for a particular connection. TCP SHOULD
inform the application of the delivery problem (unless such information has been disabled by the
application; see Section 4.2.4.1), when R1 is reached and before R2.

» The value of R1 SHOULD correspond to at least 3 retransmissions, at the current RTO. The value
of R2 SHOULD correspond to at least 100 seconds.

CSE/EE 461, Autumn 2007 M12.17

