
1

CSE/EE 461 – Module 10

Introduction to the Transport Layer

M10.2

Last Time

• We finished up the Network layer
– Internetworks (IP)

– Routing (DV/RIP, LS/OSPF, BGP)

• It was all about routing: how to
provide end-to-end delivery of
packets. Physical

Data Link

Network

Transport

Session

Presentation

Application

2

M10.3

This Time

• We begin on the Transport layer

• Focus
– Process-to-process communication

• Fast?
• Reliable?

– Impact on the network
• Congestion control

• Topics
– The Transport layer
– Acknowledgements and

retransmissions (ARQ)
– Sliding windows

Physical

Data Link

Network

Transport

Session

Presentation

Application

M10.4

The Transport Layer

• Builds on the services of the Network layer
– “TCP/IP”

• Communication between processes running on hosts
– Naming/Addressing

• Stronger guarantees of message delivery make sense
– This is the first layer that is talking “end-to-end”

3

M10.5

Internet Transport Protocols

• UDP
– Datagram abstraction between processes

– With error detection

• TCP
– Bytestream abstraction between processes

– With reliability

– Plus congestion control (later!)

SrcPort DstPort

Length Checksum

Data

0 16 31

M10.6

UDP/IP Properties

(User Datagram Protocol)

UDP

• Datagram oriented

• Lost packets

• Reordered packets

• Duplicate packets

• Limited size packets

IP
• Datagram oriented

• Lost packets

• Reordered packets

• Duplicate packets

• Limited size packets

4

M10.7

TCP/IP Properties

(Transmission Control Protocol)

TCP

• Connection-oriented

• Reliable byte-stream delivery

– In-order delivery

– Single delivery

– Arbitrarily long messages

• Synchronization

• Flow control

• Congestion control

IP
• Datagram oriented

• Lost packets

• Reordered packets

• Duplicate packets

• Limited size packets

M10.8

TCP Packet Format

16 bit window size gets
Cramped with large

Bandwidth x delay

16 bits --> 64K
BD ethernet: 122KB
STS24 (1.2Gb/s): 14.8MB

32 bit sequence number

must not wrap around faster
than the maximum packet
lifetime. (120 seconds)

-- 622Mb/s link: 55 seconds

5

M10.9

TCP End-to-End Properties

• TCP provides a full-duplex connection
– Each side of a connection can send to the other

• Connection is a stream
– Packet boundaries may not be visible to application

• Sliding window
– Endpoints exchange window sizes

– Packets carry sequence numbers
• Actually, byte counts in the connection stream

– Performance

– Reliability (ARQ)

M10.10

End-to-end Properties

• Performance
– Sliding Window

• Try to enable sender to put bandwidth x delay product bytes
on the wire

• Reliability
– Lost packets?

• Sliding window performs flow control

• Sliding window performs ARQ (Automatic Repeat Request)

– Duplicate / out-of-order packets?

• Sliding window receive (re-order) buffer

6

M10.11

Network Property: Congestion Control

• TCP also implements congestion control
– High level goal: keep from over-loading the bottleneck network

link

– Immediate goal: find the fastest transmission rate that doesn’t
overload the bottleneck

• Does it make sense to put congestion control in TCP?
– Could it be in some other layer?

• Would it make sense to apply it to UDP?

• Another goal: fairness
– I’m not slowing down, you slow down…

M10.12

TCP / UDP comparison

ConnectionlessConnection

Packet-orientedStream-oriented

UnreliableReliable

UDPTCP

7

M10.13

TCP / UDP comparison

• Stream- vs. packet-oriented
– Visible packet boundaries can act as “end of record” indicators

to application

– In a stream, if the application wants the notion of “records”, it
must embed them in the data

• Example: lines in a text file

– Since TCP doesn’t know about app record boundaries, reading
records can be cumbersome

• Each read() operation returns whatever data happens to
have arrived in the stream to this point

M10.14

TCP / UDP comparison

• Connection vs. connectionless

– UDP: “flexible” (or “you don’t know who you’re talking with”)

• Incoming data can be from anywhere

• Outgoing data can go anywhere

• (Java API provides a connect() interface – filters packets before returning
them to app)

– TCP: incoming/outgoing packets are separated into “flows”

• Provides a nice programming abstraction for many apps

• How do I open a connection?

• How do I close one?

• How do I know when the other side has stopped listening/sending

