
Section Notes
Use of select
Project

Scott Schremmer

Select and time outs

• Problem:
– Reading/writing to a socket blocks while waiting for data
– You might want to:

• Wait for some amount of time, then give up
• Wait for data on more than one socket at the same time

• Solution
– Select!
– Inputs a set of file descriptors and a time out
– Returns when one or more of the files/sockets is no longer

blocking

2

select()

• int select(int nfds, fd_set *readfds, fd_set *writefds,
fd_set *exceptfds, struct timeval *timeout)
– nfds -- This should be one greater than the highest file

descriptor considered
– readfds, writefds, exceptfds

• lists of file descriptors
– ready for reading, writing or have an exceptional condition

• fd_set format -- use macros to modify
• can be set to NULL (if all set to NULL only timeout matters)

3

select()

• macros for fdset
– FD_ZERO(&fdset)

• initializes an fdset
– FD_SET(fd,&fdset)

• adds fd to the set
– FD_CLR(fd,&fdset)

• removes fd from the set
– FD_ISSET(fd,&fdset)

• is true (>0) when fd is in the set

4

timeout

• struct timeval *timeout
• struct timeval {

long tv_sec; /*seconds*/
long tv_usec; /*microseconds*/
}

• this is the amount of time to wait for a non-blocking
state

5

Select

• Returns the number of file descriptors which are now
non-blocking
– reads / writes (depending on list) will not block

• the various lists are modified to contain only descriptors
in a non-blocking state

• If time out is reached returns 0

6

Select

• sample call for sockfd from which we want to read
#define TIMEOUT 10
fd_set read_set;
struct timeval time_out;
...
time_out.tv_sec=TIMEOUT;
time_out.tv_usec=0;
FD_ZERO(&read_set);
FD_SET(sockfd,&read_set);
n=select(sockfd+1,&read_set,NULL,NULL,&time_out)
....
n=0 if time out 1 if data to be read 7

Network vs. host byte ordering

• Your machine might of might not agree with network
ordering of bits (big-endian, little endian)

• A set of functions is provided to convert
• These have no effect on some machines.

– Use anyway for code portability!

• examples
– htons --> read “host to network short”
– ntohs --> read “network to host short”
– htonl,ntohl --> for long (32 bits)

8

Extracting port information

• From sample server:
– serv_addr.sin_port=htons(portno);

• convert the port from the host byte ordering to the network

• To extract port info from client:
– ntohs(cli_addr.sin_port);

• converts from network short to host short

9

Finding hostname

#include <netdb.h>

struct hostent *clientInfo;

....

....

clientInfo = gethostbyaddr(&(cli_addr.sin_addr),sizeof(cli_addr.sin_addr),AF_INET);

clientInfo.h_name now contains the hostname.

10

General Notes

• Use http version 1.0!
• Read returns number of bytes read, 0 indicates EOF
• Lines to be sent/received end in CRLF “\r\n”
• Blank line at end of header sent by both client and

server important (“\r\n\r\n”)!
• Simple error handling ok
• Server should close connection when done

– close(newsockfd);

• Simple is often best!

11

