
Programming in

C

S c o t t S c h r e m m e r

Outline

Introduction

Data Types and structures

Pointers, arrays and dynamic memory allocation

Functions and prototypes

input/output

comparisons

compiling/makefiles/debugging

Basic Data Types

Variables must be declared before any
instructions

char,int,float,double

no boolean!

not initialized

a string is represented as a character array

char sampleString[20]=”sample string”;

Structures

No classes

Create functions that work on structures
of data

Sample declaration:

struct person { int height, int weight}bob,sue;

bob.height = 100;

bob.height= 2*sue.height;

Typedef

Used to refer to a type with a different
name

typedef unsigned int wholeNumber;

wholeNumber a,b,c;

a=5; /*etc*/

typically used with struct

Typedef Struct

typedef struct optionalName {int height; int
weight} person;

person bob,sue;

bob.height = 100; /*etc*/

Arrays

int anArray[10];

anArray is really a pointer to the beginning
of an array

no bounds checking or length available!

anArray[20] may cause bizarre behavior

Pointers

The equivalent of an address:

int *pointerToInt; int theInt;

pointerToInt=&theInt; /*”the addrss of
theInt”*/

*pointerToInt = 5; /*follow the pointer*/

printf(“%d”,theInt);

5

Dynamic memory

allocation

int *anIntPointer,*anArray;

anIntPointer = (int *)malloc(sizeof(int));

reserves space for 1 integer

anArray=(int *)malloc(5*sizeof(int));

reserves space for a 5 element array

calloc--initialize memory to zero

Dynamic Memory

Allocation

int * anArray;

anArray = (int *)malloc(10*sizeof(int));

Equivalent:

anArray[3]=3;

*(anArray+3) =3;

pointer arithmetic, increments by size of
an integer

Dynamic Memory

With Structs

typedef struct {int height,int weight} person;

person *bob;

bob = (bob *) malloc(sizeof(person));

equivalent:

(*bob).height = 5;

bob->height =5;

Pass to a function as a pointer

Creating a linked

list

typedef struct listElem{

Person *person;

struct listElem *next;

} ListElem;

head of list frequently a double pointer

last element next=NULL

Dynamic memory

allocation

No garbage collection

free(aPointer);

Careful to free before all references are lost

Free all elements of an array of pointers

Memory leaks can be a significant problem

Don’t return

Pointers to Local

variables!

DON’T DO:

Person * someFunction() {

Person *aPointerPerson;

Person aPerson;

aPointerPerson = &aPerson;

return aPointerPerson;}

INSTEAD malloc memory for new person

Functions

int aSampleFunction(int a,int b)

 { return a*b;}

Passed by value

Except pointers, arrays

Function prototype must exist prior to
location in code

Sample function

prototype

int aSampleFunction(int,int)

main()

{

printf(“%d”,aSampleFunction(5,4));

}

int aSampleFunction(int a,int b)

{ return a*b;}

Prototypes and .h

files

Function may be in a separate file or library

Link with after compiling

Prototype usually contained in .h file

#include “file.h” or #include <file.h>

Put functions in file.c prototypes in file.h

 To include i/o functions:

#include <stdio.h>

Preprocessor

DIRECTIVES

Preprocessor run prior to compilation

#define CONSTANT value

replaces CONSTANT with value (textual
replace)

#define SUM(a,b) a+b

macros, simply replaces SUM(this,that) with
this+that

use -D flag to set constants at compilation

#if,#else,#ifdef,#endif

Input/Output

#include <stdio.h>

Output:

printf(“formating string”,arg1,arg2,etc);

special sequences: (man printf)

\n -- insert newline

\t -- insert tab

%d -- insert an integer value

%g -- insert a double

Sample Output

int anInteger =5; int aDouble = 0.35;

printf(“I am printing an integer %d\nand a
double %g”,anInt,aDouble);

I am printing an integer 5

and a double 0.35

Input

To input from the standard input:

int anInputInt;

scanf(“%d”,&anInputInt);

note need to pass a pointer to the int

File io

FILE *filePointer;

filePointer = fopen(“filename”,mode);

/*Access the file*/

fclose(filePointer);

Sample modes: (man fopen)

“r” text file for reading

“w” text file for writing

“a” append to existing text file

“rb”,”wb”,”ra” as above with binary file

File io

write to file:

fprint(filePointer,”Astring”,arg1,arg2,etc);

read from a file

fscan(filePointer,”Astring”,arg1,arg2,etc);

fgetc,fread

Comparisons

No boolean types!

a<b

returns 1 if a<b, 0 otherwise

while(1) {}

infinite loop

if,while,do while, for etc work as expected

Compilation

Typically use gnu c compiler on linux machines

gcc -o outfile file1.c file2.c file3.o

gcc -c compiles only but doesn’t link (file.o)

other options:

-w inhibit warning, -Wall include all
warnings

-On (n=1,2,3) set optimization level

-g include debugging information

Makefiles

Use dependencies to determine what to
compile

Good for large projects as limit code that
must be recompiled

Quirky about formatting, tabs important

Sample Makefile

all: client server

client: client.c

 gcc client.c -o client

server: server.c

 gcc server.c -o server

clean:

 rm client server

More Complex

makefile

all: theProgram

theProgram: file1.o file2.o file3.o

gcc file1.o file2.o file3.o -o theProgram

file1.o: file1.c headerFile.h

gcc -c file1.c

file2.o etc....

Makefiles

Many more complex configurations possible

variables for compiler and flags

file lists to avoid an entry for each object
file

DEBUGGER

Call from command line

gdb executable

debugger commands

run parameter list -- starts the program

setting break points

break file.c:10 -- break point on line 10

 break function -- break point at start of
function

Debugger

Stepping through program

next -- executes current command (steps over
functions)

step -- falls into functions

continue -- continue to execute until next breakpoint

Displaying local variables

print variable_name

where

indicates position in program and functions called

Debugger

bt

back trace

disp variableName

displays variable every time program pause

set variable variableName = 12

used to modify variables

call function(arguments)

immediately calls a function

can be used to display structures, lists etc.

