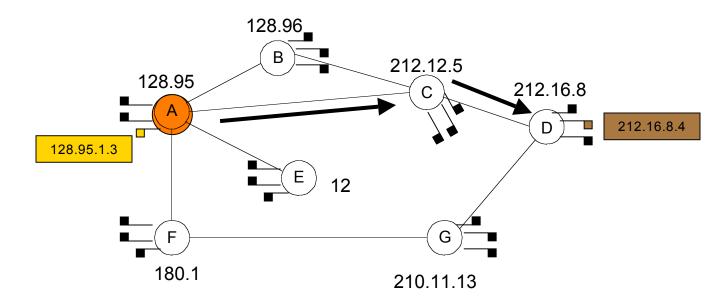
CSE/EE 461 Distance Vector Routing

This Time


• Focus

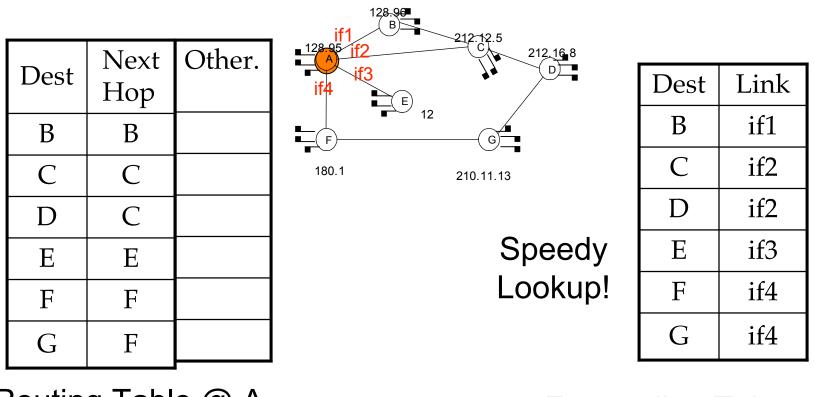
- How do we calculate routes for packets
- Routing is a network layer function
 - Each packet is routed on the basis of its destination
 - In contrast to MST where we are creating an extended LAN
 - » Broadcast, but to all the right places
- Routing Algorithms
 - Distance Vector routing (RIP)

Application		
Presentation		
Session		
Transport		
Network		
Data Link		
Physical		

Routing and Forwarding

Routing and Forwarding

- Routing is the global process that all routers go through to calculate routes
 - Involves global decisions
 - "For this link, which networks can I get to?"
- Forwarding is local the process that each router goes through for every packet to send it on its way
 - Involves local decisions
 - "For this packet, which link should I use to send it out?"
 - Compare to MST


Routing Table: Gives Next Hop

• The routing table at A, for example, lists at a minimum the next hops (IP address) for the different destinations

"B" == "128.96", etc

Forwarding Table: Maps IP address to Link

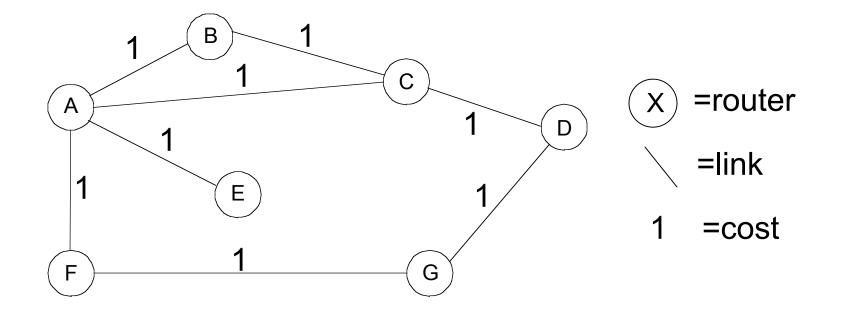
Routing Table @ A (128.95)

Forwarding Table @ A (128.95)

Routing Issues

- Automatic
- Adaptive
 - Failures or changes?
 - Node and link failures, plus message loss
 - We will use distributed algorithms
- Best path
 - Defining "best" is slippery
 - Especially as a universal
- Scale
 - Minimize # control messages and routing table size per router
- Policy
 - "A should not route to B unless there is an emergency?"
 - "A should route to B iff B routes to A."
 - Manual switching
- Scope
 - Intradomain and Interdomain

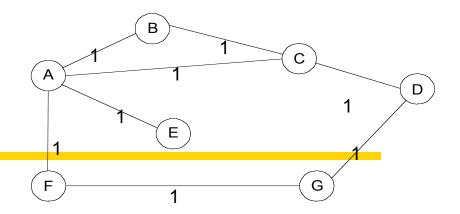
Intra vs. Inter


• Intradomain – Local traffic - Interior Routing • Interdomain MST Autonomous System (AS) – Transit traffic – Manual and Automatic routing AS1 AS2 • OSPF, BGP PP AS3 AS4

Some Pitfalls

- Using global knowledge is challenging
 - Hard to collect
 - Can be out-of-date
 - Needs to summarize in a locally-relevant way
- Inconsistencies in local / global knowledge can cause
 - Loops
 - black holes
 - Oscillations, esp. when adapting to load

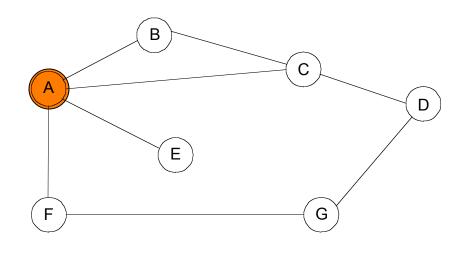
Network as a Graph


• Routing is essentially a problem in graph theory

Distance Vector Routing

- Assume:
 - Each router knows only address/cost of neighbors
- Goal:
 - Calculate routing table of next hop information for each destination at each router
- Idea:
 - Tell neighbors about learned distances to all destinations
 - Neighbors update internal routing tables
 - Do it again

Global View

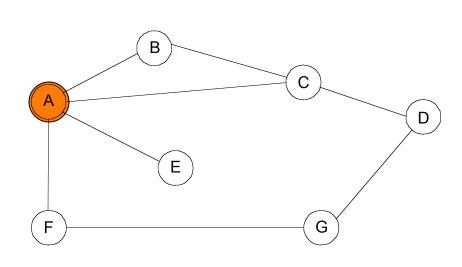

Initial View From

	Α	В	C	D	Ε	F	G
Α	0	1	1		1	1	
В	1	0	1				
С	1	1	0	1			
D			1	0			1
Ε	1				0		
F	1					0	1
G				1		1	0

DV Algorithm

- Each router maintains a vector of costs to all destinations (networks) as well as a routing table
 - Initialize neighbor entries with known cost, others with infinity
- Periodically send copy of distance vector to neighbors
 - On reception of a vector, if neighbors path to a destination plus neighbor cost is better, then switch to better path
 - update cost in vector and next hop in routing table
- Assuming no changes, will converge to shortest paths
 - But what happens if there are changes?

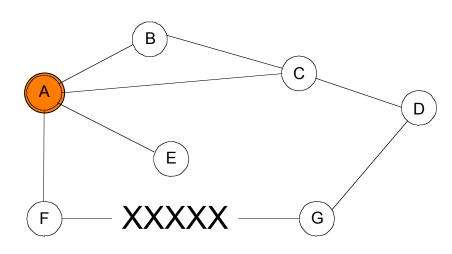
DV Example



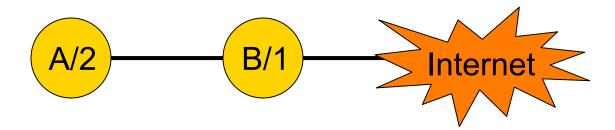
Initial table at A

Dest	Cost	Next
В	1	В
С	1	С
D	8	-
Е	1	E
F	1	F
G	8	-

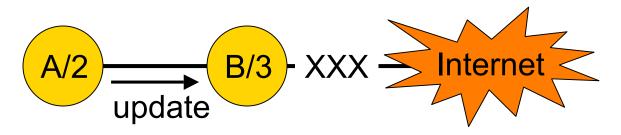
DV Example – Final Table at A


• Reached in a single round of updates from C and F

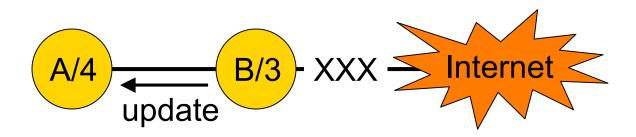
Dest	Cost	Next
В	1	В
С	1	С
D	2	С
Е	1	E
F	1	F
G	2	F


Adapting to Change

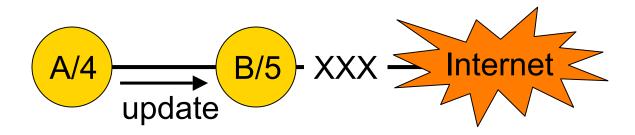
- One scenario: Suppose link between F and G fails
 - 1. F notices failure, sets its cost to G to infinity and tells A
 - 2. A sets its cost to G to infinity too, since it learned it from F
 - 3. A learns route from C with cost 2 and adopts it


Dest	Cost	Next
В	1	В
С	1	С
D	2	С
Е	1	Е
F	1	F
G	3	С

• Costs in nodes are to reach Internet



• Now link between B and Internet fails ...


- B hears of a route to the Internet via A with cost 2
 - Maybe B's update to A was lost, or wasn't sent yet
- So B switches to the "better" (but wrong!) route

• A hears from B and increases its cost

- B hears from A and (surprise) increases its cost
- Cycle continues and we "count to infinity"

- Packets caught in the crossfire loop between A and B
 - Data and routing packets get lost

Split Horizon

- Solves simple count-to-infinity problem
- Router never advertises the cost of a destination back to to the destination's next hop that's where it learned it from!
- Poison reverse: go even further advertise back infinity to keep the receiver from routing "right" when they should go "left"
 - In other words, A's DV message to B sets distance(Y)=infinity if A's next hop for Y is B.
- However, DV protocols still subject to the same problem with more complicated topologies (eg, 3 way loops with lost messages)
 - Many enhancements suggested

Routing Information Protocol (RIP)

- DV protocol with hop count as metric
 - Infinity value is 16 hops; limits network size
 - Includes split horizon with poison reverse
- Routers send vectors every 30 seconds
 - With triggered updates for link failures
 - Time-out in 180 seconds to detect failures
- RIPv1 specified in RFC1058
 - <u>www.ietf.org/rfc/rfc1058.txt</u>
- RIPv2 (adds authentication etc.) in RFC1388
 - www.ietf.org/rfc/rfc1388.txt

Key Concepts

- Routing is a global process, forwarding is local one
- The Distance Vector algorithm and RIP
 - Simple and distributed exchange of shortest paths.
 - Weak at adapting to changes (loops, count to infinity)