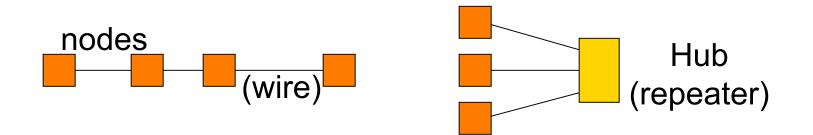

CSE/EE 461 Connecting LANs

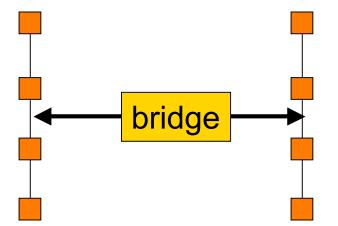
Readings: pp 165-192, 271-299


SWITCHING

- Focus:
 - What to do when one shared LAN isn't big enough?
- Interconnecting LANs
 - Bridges and LAN switches
 - A preview of network routing.

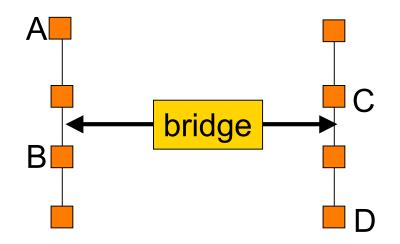
Limits of a LAN

- One shared LAN can limit us in terms of:
 - Distance
 - Number of nodes
 - Performance


- How do we scale to a larger, faster network?
 - We must be able to interconnect LANs

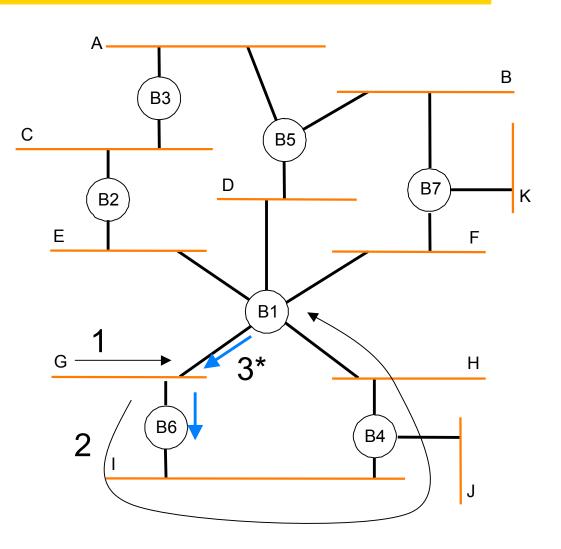
SWITCHING

- Xferring a packet from one network to another
- Packet switched vs. circuit switched
- Connection vs. Connectionless
- Contention vs. Congestion

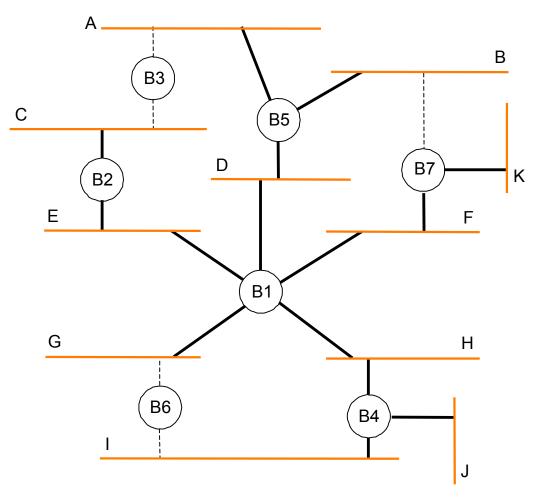

Bridges and Extended LANs

- "Transparently" interconnect LANs with bridge
 - Receive frames from each LAN and forward to the other
 - Each LAN is its own collision domain; bridge isn't a repeater
 - Could have many ports or join to a remote LAN

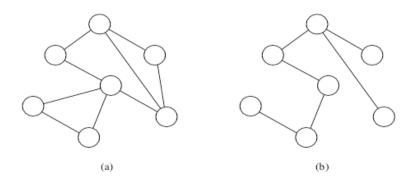
Backward Learning Algorithm


- To optimize overall performance:
 - Shouldn't forward $A \rightarrow B$ or $C \rightarrow D$, should forward $A \rightarrow C$ and $D \rightarrow B$

- How does the bridge know?
 - Learn who is where by observing source addresses and prune
 - Forward using destination address; age for robustness


Why stop at one bridge?

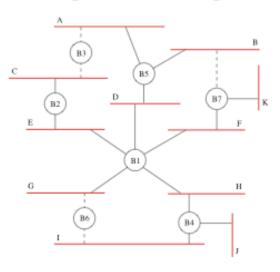
- But to avoid loops we must forward only on select bridge ports!
- The Spanning Tree algorithm does this
- It is separate from backward learning


Spanning Tree Example

- Spanning tree uses select bridges so there are no cycles
- Only one tree
 - Prune some ports
 - Switch turns off output link to a common LAN
- Q: How do we find a spanning tree?
 - Manually?
 - Automatically

Spanning Tree

- Compute ST with
 - *Single root* bridge such that
 - Root forwards onto all of its outgoing ports
 - *Designated bridge* per LAN such that
 - Only the designated bridge forwards packets
- Can be used with backward learning



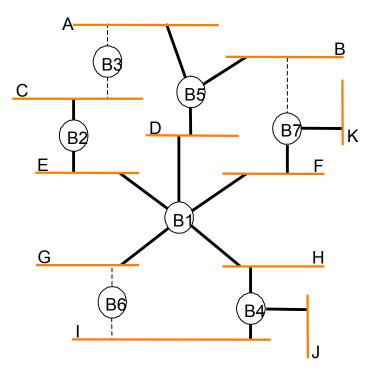
Spanning Tree Algorithm

- Distributed algorithm to compute spanning tree
 - Robust against failures, needs no organization
 - Developed by Radia Perlman at DEC
 - IEEE 802.1 spec
- Outline: Goal is to turn some bridge ports off
 - Each bridge starts off thinking (and saying)
 - I am the root.
 - I am the best path to the root.
 - Over time, it may learn that it is not the root, but continues to believe (and say) it is on the best path.
 - Eventually, it may learn that it is not even on the best path
 - So it stops announcing that it is.
 - Shuts down outgoing link.
- No Host Involvement Required

Algorithm Goal

- Each bridge has a unique id (e.g., B1, B2, B3)
- Select bridge with smallest id as root
- Select bridge on each LAN that is closest to the root as that LAN's designated bridge (use id to break ties)
- Each bridge forwards frames over each LAN for which it is the designated bridge

Algorithm Implementation


- Bridges exchange configuration messages
 - id for bridge sending the message
 - id for what the sending bridge believes to be root bridge
 - distance (hops) from sending bridge to root bridge
- Each bridge records current best configuration message for each port
- Initially, each bridge believes it is the root
- When learn not root, stop generating configuration message
 - in steady state, only root generates configuration messages

Algorithm More...

- When learn not designated bridge, stop forwarding configuration messages
 - in steady state, only designated bridges forward configuration messages
- Root bridge continues to send configuration messages periodically
- If any given bridge does not receive configuration message after a period of time, starts generating configuration messages claiming to be to be the root

Algorithm Example

- Message format: (root, dist-to-root, bridge-to-root)
- Sample messages sequences to and from B3:
 - 1. B3 receives (B2, 0, B2) from B2
 - 2. B3 accepts B2 as root (2 < 3)
 - 3. B3 sends (B2, 1, B3) to B5
 - 4. B2 accepts B1 as root and sends (B1, 1, B2) to B3
 - 5. B5 accepts B1 as root and sends (B1, 1, B5) to B3
 - 6. B3 accepts B1 as root
 - a. Sees B2 as "closer"
 - b. Shuts down outgoing link to LAN A.
 - c. Sees B5 as "closer"
 - d. Shuts down outgoing link to LAN B.

Some other tricky details

- Configuration information is aged
 - If the root fails a new one will be elected
- Reconfiguration rate is damped
 - Adopt new spanning trees slowly to avoid temporary loops

Limitations of Bridges/Switches

- Little control over forwarding paths
 - Closer may not mean closer.
- Spanning tree algorithm limits reconfiguration speed
- True Broadcast traffic flows freely over whole extended LAN
- Size of bridge forwarding tables grows with number of hosts
- All explains why can't we build a large network using bridges

Key Concepts

- We can overcome LAN limits by interconnection
 - Bridges and LAN switches
 - But there are limits to this strategy ...
- Next Topic: Routing and the Network layer
 - How to grow large and really large networks