CSE/EE 461

Application

The Network Layer

Presentation

Session

Transport

Network

Data Link

Physical

This Lecture

* Focus:
— What to do when one wire isn’t big enough?

e Point to point link —
e Broadcast link Appllcatl.on
— (Ethernet discussion coming up) Presentation
— How do we build large networks? Session
Transport
. Network
e Introduction to the Network layer Data Link
— Internetworks :
Physical

— Service models
- IP, ICMP

Internetworks

e Set of interconnected networks, e.g., the Internet

— Scale and heterogeneity

H1

|

H2

|

Network 2 (Ethernet) \

H4

H3

R1

\

Network 3 (FDDI)

|

Network 1 (Ethernet)

| |

H7

R3 H8

R2

Network 4
(point-to-point)

The Network Layer

e Job is to provide end-to-end data

. Application
delivery between hosts on an bpee
: Presentation
internetwork _
: : Session
e Provides a higher layer of
, Transport
addressing
Network
Data Link
Physical

Network Service Models

e Datagram delivery: postal service
— connectionless, best-effort or unreliable service
— Network can’t guarantee delivery of the packet
— Each packet from a host is routed independently
— Example: IP

e Virtual circuit models: telephone
— connection-oriented service
— Signaling: connection establishment, data transfer, teardown
— All packets from a host are routed the same way (router state)
— Example: ATM, Frame Relay, X.25

* You can build one with the other
— But one is much easier to build than the other

In terms of protocol stacks

e [P is the network layer protocol used in the Internet
* Routers are network level gateways

e Packet is the term for network layer PDUs (protocol

data unit)
H1
TCP =
P P
/- N\
ETH ETH| |FDDI

R2

RN

FDDI

PPP

R3

/N

PPP

ETH

H8

TCP

ETH

In terms of packet formats

e View of a packet on the wire on network 1 or 2

e Routers work with IP header, not higher

— Higher would be a “layer violation”

e Imagine if the post office read your mail

e Routers strip and add link layer headers

Ethernet Header

IP Header

Higher layer headers and Payload

!

Front of packet to left (and uppermost)

Internet Protocol (IP)

e [P (RFC791) defines a datagram “best effort” service

— May be loss, reordering, duplication, and errors!
— Currently IPv4 (IP version 4), IPv6 here/coming way

e Global, hierarchical addresses, not flat addresses
— 32 bits in IPv4 address; 128 bits in IPv6 address
— ARP (Address Resolution Protocol) maps IP to MAC addresses

e Routers forward packets using predetermined routes

— Routing protocols (RIP, OSPF, BGP) run between routers to
maintain routes (routing table, forwarding information base)

e We’ll deal with this later

IPv4 Packet Format

Version is 4

Header length
is number of 32
bit words

Limits size of
options

0 4 8 16 19 31
Version | HLen TOS Length
|dentifier for Fragments Flags Fragment Offset
TTL Protocol Checksum
Source Address
Destination Address
Options (variable) (val:r)iaa(tjale)

Data

I AN A NG

IPv4 Header Fields ...

e Type of Service

e Abstract notion,
never really
worked out

— Routers ignored

* Butnow being
redefined for
Diffserv

0 4 16 19 31
Version | HLen TOS Length
|dentifier for Fragments Flags Fragment Offset
TTL Protocol Checksum

Source Address

Destination Address

Options (variable)

Pad
(variable)

Data

I AN A NG

IPv4 Header Fields ...

e Length of packet
— Hdr+data

e Min 20 bytes,
max 65K bytes
(limit to packet
size)

0 4 16 19 31
Version | HLen TOS Length
|dentifier for Fragments Flags Fragment Offset
TTL Protocol Checksum

Source Address

Destination Address

Options (variable)

Pad
(variable)

Data

I AN A NG

IPv4 Header Fields ...

Fragment fields

Different links
have different
frame size limits

May need to
break large
packet into
smaller
fragments

0 4 16 19 31
Version | HLen TOS Length
|dentifier for Fragments Flags Fragment Offset
TTL Protocol Checksum

Source Address

Destination Address

Options (variable)

Pad
(variable)

Data

I AN A NG

IPv4 Header Fields ...

Time To Live

Decremented by
router and packet
discarded if =0

Prevents immortal
packets

0 4 16 19 31
Version | HLen TOS Length
|dentifier for Fragments Flags Fragment Offset
TTL Protocol Checksum
Source Address
Destination Address
Options (variable) (val:r)iaa(tjale)

Data

I AN A NG

IPv4 Header Fields ...

e Identifies higher
layer protocol

— E.g., TCP, UDP

0 4 16 19 31
Version | HLen TOS Length
|dentifier for Fragments Flags Fragment Offset
TTL Protocol Checksum

Source Address

Destination Address

Options (variable)

Pad
(variable)

Data

I AN A NG

IPv4 Header Fields ...

Header checksum

Recalculated by
routers (TTL
drops)

Doesn’t cover data
— Why not?

Disappears for
IPv6

0 4 16 19 31
Version | HLen TOS Length
|dentifier for Fragments Flags Fragment Offset
TTL Protocol Checksum
Source Address
Destination Address
Options (variable) (val:r)iz(tjale)

Data

I AN A NG

IPv4 Header Fields ...

Source/destination
addresses

— Not Ethernet

Unchanged by

routers

Not authenticated

0 4 16 19 31
Version | HLen TOS Length
|dentifier for Fragments Flags Fragment Offset
TTL Protocol Checksum

Source Address

Destination Address

Options (variable)

Pad
(variable)

Data

I AN A NG

IPv4 Header Fields ...

e [P options indicate
special handling

— Timestamps
— “Source” routes

e Rarely used ...

0 4 16 19 31
Version | HLen TOS Length
|dentifier for Fragments Flags Fragment Offset
TTL Protocol Checksum

Source Address

Destination Address

Options (variable)

Pad
(variable)

Data

I AN A NG

Fragmentation Issue

e Different networks may have
different frame limits (MTUs) = > "
— Ethernet 1.5K, FDDI 4.5K | | |

Network 2 (Ethernet) \

. =2| [R1| Fragment?
e Don’t know if packet will be . \

too big for path beforehand ®

Ha
— IPv4: fragment on demand and
reassemble at destination

Network 3 (FDDI)

— IPv6: network returns error / \
message so host can learn limit H5 H8

Fragmentation and Reassembly

e Each network has some MTU
e Strategy

— fragment when necessary (MTU < Datagram)
— try to avoid fragmentation at source host

— refragmentation is possible

— fragments are self-contained datagrams

— use CS-PDU (not cells) for ATM

— delay reassembly until destination host

— do not recover from lost fragments

e Example

HI1 Rl R2 R3 HE

| | | || |

lETH[I%IIGU?] lFDDdIPtlJCUb [PZPIIdlEIZI ETH|:§I&12]

P2P |IH(376) ETH |IH(376))

i

Fragment Fields

Fragments of one
packet identified
by (source, dest,
frag id) triple

— Uniquifies

Offset gives start,
length changed

Flags are More
Fragments (MF)
Don’t Fragment
(DF)

0 4 16 19 31
Version | HLen TOS Length
|dentifier for Fragments Flags Fragment Offset
TTL Protocol Checksum
Source Address
Destination Address
Options (variable) (val:r)iz(tjale)

Data

I AN A NG

Fragmenting a Packet

0 4 8 16 19 31
Versiori HLen| TOS Length

Identifier for FragmenEIag4 Fragment Offséit

TTL | Protocol Checksum
Source Address
Destination Address
Options (variable) | (vgﬁgble
Data

N ARSI

Packet Format

(b)

Start of header
Ident =x I I'I} l Offset =10

Rest of header

1400 data bytes

Start of header

Ident =x l 1] Offset =10

Rest of header

S12 data bytes

Start of header

Ident =x l Il 1 Offset =512

Rest of header

S12 data bytes

Start of header

Ident =x l I'I.' l Offset =102

Rest of header

376 data bytes

Fragment Considerations

e Relating fragments to original datagram provides:
— Tolerance of loss, reordering and duplication
— Ability to fragment fragments

e Reassembly done at the endpoint
— Puts pressure on the receiver

* Consequences of fragmentation:

— Loss of any fragments causes loss of entire packet
e The packet train and buffer overflow

Fragmentation Issues Summary

e Causes inefficient use of resources within the network
- BW, CPU
— Eg, App sends 1024 bytes across ARPANET (1007 MTU)
e 1024 + 40 for TCP/IP header
* Frag 1 == 1000, Frag 2 == 84
e Should have sent 1006 bytes!
e Higher level protocols must rexmit entire datagram
— Really hard with “guaranteed packet loss”

e Efficient reassembly is hard

— Lots of special cases
— (think linked lists)

Avoiding Fragmentation

Always send small datagrams
— Might be too small

“Guess” MTU of path
— Use DF flag. May have large startup time

Discover actual MTU of path
— One RT delay w/help, much more w/o.
— “Help” requires router support

Guess or discover, but be willing to accept your
mistakes

What is an Internet Address?

0 4 8 16 19 31
Version| HLen TOS Length

|dentifier for Fragments | Flags Fragment Offset

TTL Protocol Checksum

Source Address

Destination Address

Pad

Options (variable) (variable)

Data

A AN A/ NN

Global Addresses

* Properties 1. Small number of large networks
2. Modest # of medium sized networks
3. Many small networks

— globally unique

— hierarchical: network + host

e Format CLASS SIZE NUMBER
o [T e] A 2G 126
o [T e T o] B
o [T swen oo C 254 2M
* Dot notation
- 10324
— 128.96.33 81

— 192.12.69.77

Names, Forwarding, and Routes

e A Name is where (IP) you want to get.

— Eg, DEST =207.171.178.146
e A Forward Hop is the name of the next closes node
e A Route is a series forward hops

— EG, SRC =128.208.200.111
e DEST =128.30.2.82 (www.lcs.mit.edu)

[Lt1:/het/share/vmware] bershad® traceroute www.les.mit.edu

traceroute to dib.csail.mit.edu {128.308.2.82), 64 hops max, 48 byte packets

1 filterqueen—-gel-4.cac.washington.edu {128.208.200.188) 2.588 ms 1.920 ms 1.892 ms
uwbr-ads-81-v 11998 .cac.washington.edu {1468.142.155.23) 2.213 ms 5.020 ms 2.435 ms
hnsp2-wes-ge-8-8-8-8.pnw-gigapop.net (209.124.176.12) 2.291 ms 6.207 ms 2.491 ms
abi lene-pnw.pnw-gigapop.net (209.124.179.2) 3.595 ms 17.4523 ms 2.574 ms
dnvrng-sttlng.abilene.ucaid.edu {192.32.8.58) 53.462 ms 22.024 ms 238.649 ms
kscyng-dnvrng.abi lene.ucaid.edu (192.32.8.14) 39.7780 ms 328.647 ms 42.6228 ms
iplsng-kscyng.abi lene.ucaid.edu (193.32.2.88) 276.184 ms 276.761 ms *
chinng-iplsng.abi lene.ucaid.edu {(198.32.8.76) S57.336 ms 52.868 ms 53.371 ms
nycmhg-chinng.abi lene.ucaid.edu {(198.32.8.83) 86.404 ms 142.882 ms 86.826 ms
hox238guwl-po-9-1-nox-nox.nox.org (192.5.89.9) 76.934 ms 77.859 ms 76.957 ms
hox238guwi-peer—-nox-mi t-192-5-89-98 .nox.org (192.5.89.98) 20.265 ms 85.553 ms 87.329 ms
b24-rtr-2-backbone.mit.edu {18.162.8.23) 92.911 ms 7?7.472 ms 77.152 ms
mithet.trantor.csail.mit.edu {(12.4.7.65) 77.064 ms 77.944 ms 77.197 ms
trantor.kalgan.csail.mit.edu {128.30.8.246) 77.445 ms 77.347 ms 77.533 ms
dib.csail.mit.edu {128.30.2.82) 78.776 ms 77.456 ms 78.357 ms
[Lt1:/net fshare fvmuare] bershad®]

2
4
S
6
-
8
9

Q0 0 W W

How can it work?

Every IP DG contains the ultimate destination
— DEST field
Network part of an IP address uniquely identifies a single physical
network in the internet
— Eg, DEST = 128.30.2.82
e NETWORK = 128.30.2
All IP end points (hosts and routers) that have the same network

address (eg, 128.30.2.[0--255]) are connected to the same physical
network™

Every physical network (A) on the internet is connected to at least
one “forwarding host” (router) that is also connected to at least one
other physical network (B).

— A can talk to B, B can talk to A.

Datagram Forwarding

e Strategy

— every datagram contains destination's address
— 1f directly connected to destination network, then

forward to host

— 1f not directly connected to destination network, then
forward to some router

— forwarding table maps network number into next hop
— each host has a default router
— each router maintains a forwarding table

* Example (router R2)

Network Number

Next Hop

S S

NN

R3
R1
interface 1
interface 0

May be recursive, eg, how to get to “R3”

Address Translation

* Map IP addresses into physical addresses
— destination host

— next hop router

e Techniques

— encode physical address in host part of IP address
— table-based

« ARP
— table of IP to physical address bindings

— broadcast request if IP address not in table
— target machine responds with its physical address

— table entries are discarded if not refreshed

ARP Packets

Hardware type = 1 ProtocolType = 0x0800

HLEN = {8 PLEN = 32 Operation

SourceHardwareAddr (bytes 0-3)

SourceHardwareiddr (bytes S5jourceProtocoliddr (bytes

SourceProtocoliddr (bytes 2-TyrgetHardwareiddr (bytes

TargetHardwareAddr (bytes 2-5)

TargetProtocolAddr (bytes 0-13)

— HardwareType: type of physical network (e.g., Ethernet)
— ProtocolType: type of higher layer protocol (e.g., IP)
— HLEN & PLEN: length of physical and protocol addresses

— Operation: request or response

. L]

— Source/Target Physical/Protocol addresses Notes
— table entries timeout in about 10 minutes

— update table with source when you are the target
— update table table if already have an entry

— do not refresh table entries upon reference

ICMP

e What happens when things go wrong?
— Need a way to test/debug a large, widely distributed system

e [CMP = Internet Control Message Protocol (RFC792)

— Companion to IP — required functionality

e Used for error and information reporting:
— Errors that occur during IP forwarding
— Queries about the status of the network

ICMP Generation

Error during
forwarding!

IP packet

source D

&
@&

b
@

ICMP

IP packet

Common ICMP Messages

Destination unreachable

— “Destination” can be host, network, port or protocol
Packet needs fragmenting but DF is set
Redirect

— To shortcut circuitous routing
TTL Expired

— Used by the “traceroute” program
Echo request/reply

— Used by the “ping” program
Cannot Fragment
Busted Checksum

ICMP messages include portion of IP packet that triggered the
error (if applicable) in their payload

ICMP Restrictions

e The generation of error messages is limited to avoid
cascades ... error causes error that causes error!
— 1->n

e Don’t generate new (ICMP) error in response to:
— An ICMP error
— Broadcast/multicast messages (link or IP level)
— IP header that is corrupt or has bogus source address
— Fragments, except the first

e ICMP messages are often rate-limited too.

Key Concepts

e Network layer provides end-to-end data delivery across
an internetwork, not just a LAN

— Datagram and virtual circuit service models
— IP/ICMP is the network layer protocol of the Internet

