
CSE/EE 461

Sliding Windows and ARQ

2

Slowly Spinning Wheels

Lockstep

3

Stop-and-Wait

• Only one outstanding
packet at a time

• Also called alternating
bit protocol

• Reliability
• Flow Control

0

1

0

1

Sender Receiver

0

1

1

0

4

Limitation of Stop-and-Wait

• Lousy performance if wire time << prop. delay
– Max BW: B
– Actual BW: M/2D

• Example: B = 100Mb/s, M=1500Bytes, D=50ms
• Actual BW = 1500Bytes/100ms --> 15000 Bytes/s -->

100Kb/s
• 100Mb vs 100Kb?

Data

Ack

5

More BW Please

• Want to utilize all available bandwidth
– Need to keep more data “in flight”
– How much? Remember the bandwidth-delay product?

• Leads to Sliding Window Protocol
• Window size says how much data can be sent without

waiting for an acknowledgement

6

Sliding Window

• Sender can send a lot of data before waiting for an ack
– Amount of data is the window size

• #pkts, or #bytes, depending
• Sender tries not to send more data than the receiver can handle

– Window size - sizeof(unacknowledged data)
• It supports multiple functions:

– Reliable delivery
• If I hear you got it, I know you got it.
• ACK (Ack # is “next byte expected”)

– In-order delivery
• If you get it, you get it in the right order.
• SEQ # (Seq # is “the byte this is in the sequence”)

– Flow control
• If you don’t have room for it, I won’t send it.

7

Sliding Window – Sender

• Window bounds outstanding data
– Implies need for buffering at sender

• Specifically, must buffer unacked data
• “Last” ACK applies to in-order data

– Need not buffer acked data
• Sender maintains timers

– Go-Back-N: one timer, send all unacknowledged on timeout
– Selective Repeat: timer per packet, resend as needed

≤ Window Size

“Last” ACK Last Sent

… …Sender:

8

Sliding Window – Timeline

Sender Receiver

Ti
m

e

Data

Ack

•Receiver ACK design choices:
–Individual

•Each packet acked
–Cumulative (TCP)

•Ack says “got everything up to X-
1…”
•really, “my ack means that the next
seq# I am expecting is X”

–Selective (newer TCP)
•Acks says “I got X through Y”
•Easier to keep pipe full with
unreceived data
•More complex

– Negative
•Acks says “I did not get X”
•Decrease rexmit time

9

Sliding Window – Receiver

• Receiver buffers too:
– data may arrive out-of-order
– or faster than can be consumed by receiving application

• Drop?
• No sense having more data on the wire than can be buffered at the

receiver.
– In other words, current receiver buffer size limits the window

size

 <= Receive Window

“Last” Received Largest Accepted

… …Receiver:

10

Flow Control

• Sender must transmit data no faster than it can be
consumed by the receiver
– Receiver might be a slow machine
– App might consume data slowly

• Implement by adjusting the size of the sliding window
used at the sender based on receiver feedback about
available buffer space
– Receiver “advertises” its receive window
– Piggyback on the ack

 <= Receive Window

“Last” Received Largest Accepted

… …

11

One more thing…

• Decouple sending application from sending protocol
• Sender needs to buffer messages anyway in order to resend
• Each side maintains some local and remote buffer state and

invariants
• Local buffer state is correct
• Remote buffer state is conservative
• Sending, receiving, reading and writing are allowed to perform

according to the states of the buffers and the invariants
– Invariants --> allowed behavior

12

Sender and Receiver Buffering

Sending application

LastByteWritten

TCP

LastByteSentLastByteAcked

= available buffer

LastByteAcked <= LastByteSent
LastByteSent <= LastByteWritten

Older bytes Newer bytes

These
bytes have
not shown
up yet.

Receiving application

LastByteRead
TCP

LastByteRcvdNextByteExpected

= buffer in use

LastByteRead < NextByteExpected
NextByteExpected <= LastByteRcvd+1

== if data arrives in order
else start of first gap.

These
bytes have
gone to
the app.

Older bytes Newer byteswrite read

13

Flow Control

LastByteRcvd - LastByteRead <= MaxRcvBuffer

AdvertisedWindow = MaxRcvBuffer - ((NextByteExpected -1) - LastByteRead
“All the buffer space minus the buffer space that’s in use.”

MaxRcvBuffer
MaxSendBuffer

As data arrives, receiver acknowledges it so long as all preceding bytes have also arrived.
Advertised Window potentially shrinks depending on how fast receiving app is drawing out
Data.

14

Flow Control On the Sender

MaxRcvBuffer
MaxSendBuffer

LastByteSent - LastByteAcked <= AdvertisedWindow ‘don’t send that which is unwanted.’

EffectiveWindow = AdvertisedWindow - (LastByteSent - LastByteAcked)

OK to send that which there is room for, which is that which was advertised
minus that which I’ve already sent since receiving the last advertisement.

15

Sending Side -- One last detail

MaxRcvBuffer
MaxSendBuffer

LastByteWritten - LastByteAcked <= MaxSendBuffer
Can only hang on to unsent and unacked data if there’s room for it.

==> BLOCK write(y) if
(LastByteWritten - LastByteAcked) + y > MaxSendBuffer

16

Receiving Side -- One last detail

MaxRcvBuffer
MaxSendBuffer

LastByteRead < NextByteExpected
Can’t read data if it hasn’t arrived.

==> BLOCK read(y) if
LastByteRead < NextByteExpected

17

Example – Exchange of Packets

SEQ=1

SEQ=2

SEQ=3
SEQ=4

ACK=2; WIN=3

ACK=3; WIN=2

ACK=4; WIN=1

ACK=5; WIN=0

Receiver has
buffer of size 4
and application
doesn’t readStall due

to flow
control
here

T=1

T=2

T=3

T=4

T=5

T=6

18

Example – Buffer at Sender

21 3 4 5 6 7 8 9

21 3 4 5 6 7 8 9

21 3 4 5 6 7 8 9

21 3 4 5 6 7 8 9

21 3 4 5 6 7 8 9

21 3 4 5 6 7 8 9

T=1

T=2

T=3

T=4

T=5

T=6

=acked

=sent

=advertised

= queued

19

TCP Packet Format

16 bit window size gets
Cramped with large
Bandwidth x delay

16 bits --> 64K
BD ethernet: 122KB
STS24 (1.2Gb/s): 14.8MB

32 bit sequence number
must not wrap around faster
than the maximum packet
lifetime. (120 seconds)
 -- 622Mb/s link: 55 seconds

What to do?

20

The IP Packet

21

An Entire Ether Packet

22

EtherTypes

23

Key Concepts

• Transport layer allows processes to communicate with
stronger guarantees, e.g., reliability

• Basic reliability is provided by ARQ mechanisms
– Stop-and-Wait through Sliding Window plus retransmissions

