CSE/EE 461

Sliding Windows and ARQ

Slowly Spinning Wheels

Lockstep

Stop-and-Wait

Only one outstanding
packet at a time

Also called alternating
bit protocol

Reliability
Flow Control

Sender

Receiver

—>

Limitation of Stop-and-Wait

Data

=
<
L
Ack

e Lousy performance if wire time << prop. delay

— Max BW: B

— Actual BW: M /2D

e Example: B = 100Mb /s, M=1500Bytes, D=50ms
e Actual BW = 1500Bytes/100ms --> 15000 Bytes/s -->

100Kb /s

e 100Mb vs 100Kb?

More BW Please

e Want to utilize all available bandwidth

— Need to keep more data “in flight”
— How much? Remember the bandwidth-delay product?

e Leads to Sliding Window Protocol

e Window size says how much data can be sent without
waiting for an acknowledgement

R

Sliding Window

e Sender can send a lot of data before waiting for an ack
— Amount of data is the window size
o #pkts, or #bytes, depending
e Sender tries not to send more data than the receiver can handle
— Window size - sizeof(unacknowledged data)
e It supports multiple functions:
— Reliable delivery
o If I hear you got it, I know you got it.
e ACK (Ack # is “next byte expected”)
— In-order delivery
* Ifyou get it, you get it in the right order.
e SEQ # (Seq # is “the byte this is in the sequence”)
— Flow control
* If you don’t have room for it, won't send it.

Sliding Window — Sender

=Window Size

Sender: ...$

| |
“Last” ACK Last Sent

 Window bounds outstanding data
— Implies need for buffering at sender
* Specifically, must buffer unacked data
 “Last” ACK applies to in-order data
— Need not buffer acked data
* Sender maintains timers
— Go-Back-N: one timer, send all unacknowledged on timeout
— Selective Repeat: timer per packet, resend as needed

Sliding Window — Timeline

Sender Receiver

eReceiver ACK design choices:
Dafa —Individual
eEach packet acked
—Cumulative (TCP)
* Ack says “got everything up to X-

A
‘E' 1.
« ereally, “my ack means that the next

< seq# I am expecting is X”

—Selective (newer TCP)
e Acks says “I got X through Y”

' eEasier to keep pipe full with
unreceived data

*More complex

— Negative
* Acks says “I did not get X”
*Decrease rexmit time

Time

(00}

Sliding Window — Receiver

<= Receive Window

Receiver: ...$ S,
} }

“Last” Received Largest Accepted

* Receiver buffers too:
— data may arrive out-of-order
— or faster than can be consumed by receiving application
* Drop?
e No sense having more data on the wire than can be buffered at the
receiver.

— In other words, current receiver buffer size limits the window
size

Flow Control

e Sender must transmit data no faster than it can be
consumed by the receiver
— Receiver might be a slow machine
— App might consume data slowly

<= Receive Window

VR S . O
. . . “Last”fRe eived _Lar .esttAccepte.:d
e Implement by adjusting the size of the sli ing window
used at the sender based on receiver feedback about

available buffer space
— Receiver “advertises” its receive window
— Piggyback on the ack

10

One more thing...

Decouple sending application from sending protocol
Sender needs to buffer messages anyway in order to resend

Each side maintains some local and remote buffer state and
Invariants

Local buffer state is correct
Remote buffer state is conservative

Sending, receiving, reading and writing are allowed to perform
according to the states of the buffers and the invariants

— Invariants --> allowed behavior

11

Sender and Receiver Buffering

Sending application

Older bytes write Newer bytes
TCP
LastByteWritten
} }
LastByteAcked LastByteSent

= available buffer

LastByteAcked <= LastByteSent
LastByteSent <= LastByteWritten

Receiving application

Older bytes €30 Newer bytes

Z;zsassehave TCP

gone to These

the'spp. L astByteRead bytes have

not shown
{ up yet.
b
NextByteExpected LastByteRcvd

= puffer in use

LastByteRead < NextByteExpected
NextByteExpected <= LastByteRcvd+1
== if data arrives in order

else start of first gap. 12

Flow Control

Sending application
Older bytes writo Newer bytes

MaxSendBuffe
TCP
TN asgByRWhten)
é A
LastByteAcked LastByteSent

[] = available buffer

LastBvteAcked <= LastBvteSent
LastByvteSent <= LastByteWritten

LastByteRcvd - LastByteRead <= MaxRcvBuffer

Receiving application
Older bytes 8¢ Newer bytes

MaxRcvBuffer

byios have TC

Lgorete. 1 astBVieRSS e

< bysnere

g up yet.

i
NextByteExpected LastByteRcvd

[} = buffer in use

. LastByteRead < NextByteExpected

: NextByteExpected <= LastByteRvcd+1

’ == if data arrives in order

else start of first gap. 1

AdvertisedWindow = MaxRcvBuffer - ((NextByteExpected -1) - LastByteRead
“All the buffer space minus the buffer space that’s in use.”

As data arrives, receiver acknowledges it so long as all preceding bytes have also arrived.
Advertised Window potentially shrinks depending on how fast receiving app is drawing out 13

Data.

Flow Control On the Sender

Sender and Receive

LastByteWritten
A

TCP

Bt

LastByteSent

MaxSendBuffer\
]

}
LastByteAcked

[| = available buffer

LastByteAcked <= LastBvteSent
LastByteWritten <= LastByteSent

r Buffering
MaxRcvBuffer
tothe \pip s @? sad /
[
NextByteExpected LastByteRcvd

] = buffer in use

== if data arrives in order

LastByteSent - LastByteAcked <= AdvertisedWindow

EffectiveWindow = AdvertisedWindow -

else start of first gap.

17

‘don’t send that which is unwanted.’

(LastByteSent - LastByteAcked)

OK to send that which there is room for, which is that which was advertised
minus that which I've already sent since receiving the last advertisement.

14

Sending Side -- One last detail

Sender and Receiver Buffering

Sending app@

MaxSendBuffer\

TCP

LastByeWritten \#

i » é
LastByteAcked} LastByteSent

[| = available buffer

LastByteAcked <= LastBvteSent
LastByteWritten <= LastByteSent

@] application

MaxRcvBuffer
These byt //
have gone
to the app. o
\ Las@?ead
[
NextByteExpected LastByteRcvd

] = buffer in use

== if data arrives in order
else start of first gap. 17

LastByteWritten - LastByteAcked <= MaxSendBuffer
Can only hang on to unsent and unacked data if there’s room for it.

==> BL OCK write(y) if

(LastByteWritten - LastByteAcked) + y > MaxSendBuffer

15

Receiving Side -- One last detail

Sender and Receiver Buffering

Sending app@

MaxSendBuffer\

TCP

LastByeWritten \#

i » é
LastByteAcked} LastByteSent

[| = available buffer

LastByteAcked <= LastBvteSent
LastByteWritten <= LastByteSent

LastByteRead < NextByteExpected

@] application

MaxRcvBuffer
These byt //
have gone
to the app. o
\ Las@?ead
[
NextByteExpected LastByteRcvd

] = buffer in use

LastByteRead < NextByteExpected
NextByteExpected <= LastByteRved+1
== if data arrives in order
else start of first gap. 17

Can’t read data if it hasn’t arrived.

==> BL OCK read(y) if

LastByteRead < NextByteExpected

16

Example — Exchange of Packets

Stall due
to flow

control——> T=5

here

ACK=2; WIN=3

ACK=3: WIN=2

W

ACK=4; WIN=1

0

ACK= W‘N=0

SEQ=1

SEQ=2

Receiver has
buffer of size 4
and application
doesn’t read

17

Example — Buffer at Sender

6|7 /8]|9
61718109 . =acked

. =sent
6|7 /8]|9 _

=advertised

617189 I =queued
6|7 /8]|9
6|7 /8]|9

18

TCP Packet Format

16 bit window size gets
Cramped with large
Bandwidth x delay

TCP Packet Format

16 bits --> 64K

Dest Port # BD ethernet: 122KB
STS24 (1.2Gb/s): 14.8MB

Sequence #

Acknowledgement #
i 32 bit sequence number

on | usea | Flags | Window Size must not wrap around faster

Checksum Urgent Ptr than the maximum packet
lifetime. (120 seconds)
Options -- 622Mb/s link: 55 seconds

19

The IP Packet

|MAC hcadcrHIP hcadcr(|Data :::|

IP header:

IIIIIIII@IIII@II@IIIII@@I@@IIII@I

Version | IHL TOS Total length
Identification H Flags H Fragment offset
1L, H Protocol H Header checksum

Source IP address

Destination IP address

Options and padding ::

|
|
|
|
|

TCP Packet Format

32 bits

Src Port #

Dest Port #

Sequence #

Acknowledgement #

HdrI

usedI Flags

Window Size

Checksum

Urgent Ptr

20

An Entire Ether Packet

[MAC hcecader | IP hecader [Data i

0]

Destination Source Ether DATA CRC
MAC address MAC address Type 46 to 1500 Bytes Checksum
4 Bytes
MAC-Header
14 Bytes

Total length: 64 to 1518 Bytes

The most common Ethernet Frame format, type Il

IP header:
TTWWT@WW@@WEEFTMBWFWWE@VWEWVWPTT
| Vesion | mHL | TOS] Total length
\ Identification [Flags J/ Fragment offset
’ TTL ’ Protocol J/ Header checksum
Source IP address
s e P———————
| Options and padding ::

461 /HW/HW3] b d% sudo tcpdump -xx hos washington.edu ' acket Format
bose Cll]f'pl a
32 bits

Src Port # Dest Port #

Sequence #

Acknowledgement #
Hdr | Un-
Len, | used

Checksum Urgent Ptr

L)
[
S

| Flags Window Size

[ax]
n
=

f
4008
A

oD
L g B]
a @
(= S)

al ||'1I1 Flﬂ o b

EtherTypes

IP header:
TFWWFEWW@@WMEEWMmﬁﬁm@ﬁﬁﬁaﬁﬁﬁﬁiﬁﬁ
| Vesion | mHL | TOS Total length
Links: Ethernet assigned numbers.
‘ Identification Fragment offset
Ethertype Protocol ’ TTL ’ Protocol Header checksum
0x0000 ’
o [EEE 802.3 length. e

0x05DC } Dcstina[ipn IP address

gig:gg LD 8L g ’ Options and padding :::

0x0661 DLOG. :

0x0800 IP, Internet Protocol.

0x0801 X.75 Internet.

0x0802 NBS Internet.

0x0803 ECMA Internet.

0x0804 Chaosnet.

0x0805 X.25 Level 3.

0x0806 ARP, Address Resolution Protocol.

0x8035 DRARP, Dynamic RARP.)

RARP, Reverse Address Resolution Protocol.
0x80F3 AARP, AppleTalk Address Resolution Protocol.
0x8100 EAPS, Ethernet Automatic Protection Switching.
0x8137 IPX, Internet Packet Exchange.
0x814C SNMP, Simple Network Management Protocol.
0x86DD IPv6, Internet Protocol version 6.
0x880B PPP, Point-to-Point Protocol.

, Use -v or v for full protocol decode
pe EN16ME (Ethernet), capture size 96 bytes
18.0.1.4.63684 = www.cs.washington.edu.http: S 1795621896:1

3f30 9000 95c9 3400 450070....4.
4086 75ac Ba00 O104 5AdA .<5.Q.Q.u...
6afd dcd2 @6 7 aBB2 .X.t.Pj..B..
B204 B5b4 1300 0101 . .[eeeeenn..
BPPE BEEG !

OO0 0 3@
l\.l
=
N

=
I_.I
=
[a]

0x880C GSMP, General Switch Management Protocol.

0x8847 MPLS, Multi-Protocol Label Switching (unicast).

0x8848 MPLS, Multi-Protocol Label Switching (multicast).

0x8863 PPPoE, PPP Over Ethernet (Discovery Stage).

0x8864 PPPoE, PPP Over Ethernet (PPP Session Stage).

0x88BB LWAPP, Light Weight Access Point Protocol.

0x88CC LLDP, Link Layer Discovery Protocol.

0x8E88 EAPOL, EAP over LAN.

0xFFFF reserved.

22

Key Concepts

e Transport layer allows processes to communicate with
stronger guarantees, e.g., reliability

e Basic reliability is provided by ARQ mechanisms
— Stop-and-Wait through Sliding Window plus retransmissions

23

