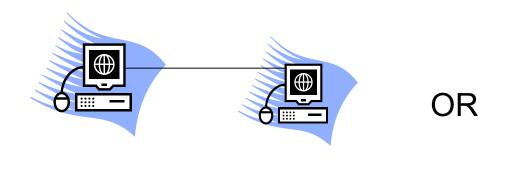
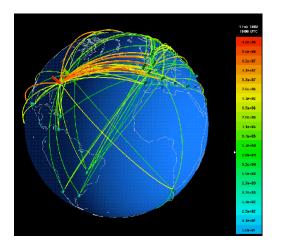
CSE/EE 461

Computer Networks

Brian Bershad <u>Bershad@cs.washington.edu</u>

Administration

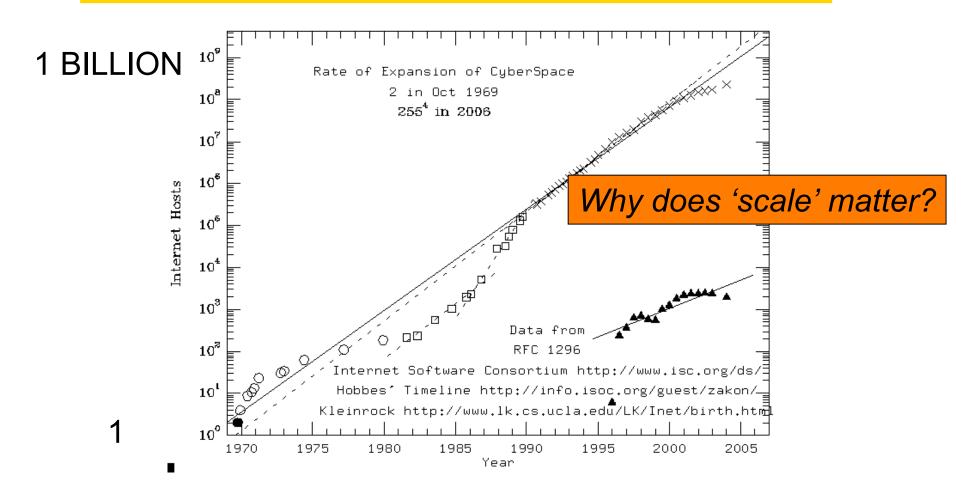

- Generally, check the web site
- Grading
 - Final: 40%
 - Midterm: 25%
 - Homework: 30%
 - Quizzes: 5%
- Policies
 - Late policy: Don't be late.
 - Partner policy: Work alone.
 - Cheating policy: Don't cheat.


This Week

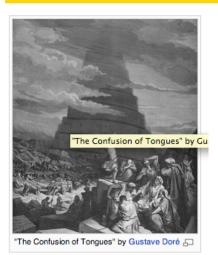
- Readings
 - CN:Chapter 1, Chapter 2 through end of 2.5
- HW 1 due Thurs
- HW 2 out Wed
 - Mostly based on readings
 - Due Fri Jan 20
 - After that, we go to a Fri out/Fri in schedule
- Topics
 - Network principles (today)
 - Elements of network protocols (wed)
 - Reliable transmission (fri)

A Computer Communications Network

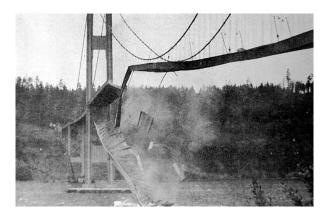
- "Network" is clearly an overloaded word:
 - Economic networks, regulatory networks, social networks...
 - Telephone, Cable TV, Bank tellers, computer clusters
- For 461, a network is what you get anytime you connect two or more computers together by some kind of a link.


Essential terms

- Node
 - Bandwidth
- Link
 - Aggregate Bandwidth
 - Latency
 - Round-trip time
- Switch/Router
 - Bandwidth
 - Aggregate (bisection) Bandwidth
- Protocol
 - Message syntax and semantics
- Throughput
 - BW achieved by a protocol


The networks we study


- We are interested in networks that are:
 - Large scale
 - Intrinisically Unreliable
 - Distributed
 - Heterogeneous


The meaning of "Large-scale"

Some Famous Non Scalable Artifacts

A basic design concept goes "out of whack" relative to some other one

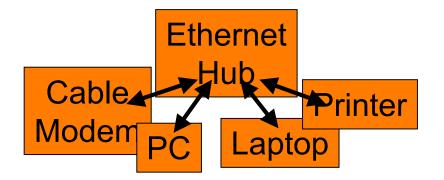
Intrinsic Unreliability

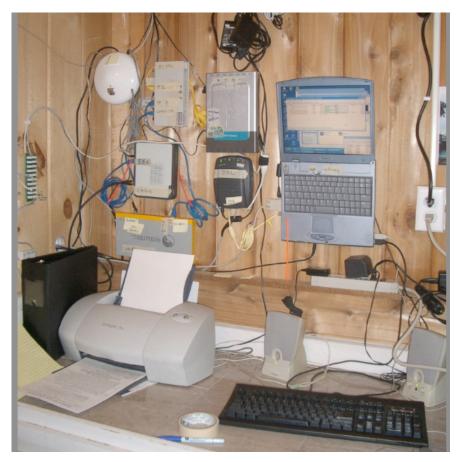
- Information sent from a first place to a second
 - May not arrive
 - May arrive more than once.
 - May arrive in garbled fashion
 - May arrive before other subsequently sent information from that same first place
 - May arrive after other previously sent information sent from that same first place
 - May be read by others
 - May be written by others
- Why build intrinsically unreliable networks?

Distributed

"A distributed system is a system in which I can't do my work because some computer has failed that I've never even heard of." – Lamport

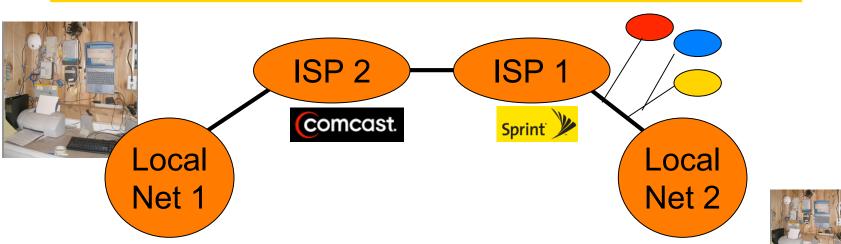
- (Hopefully) independent failure modes
- Exposed and hidden dependencies
- Independent administrative controls


Heterogeneity


- Heterogeneous: Made up of different kinds of stuff
 - Homogeneous: Made up of the same kind of stuff
- Principle 1: Homogeneous networks are easier to deal with, but more difficult to scale
 - Consider telephone network vs Internet
- Principle 2: Heterogeneous networks lead to greater innovation
 - Consider telephone network vs Internet
 - Reasons?

Model of a Network

- <u>Links</u> carry information (bits)
 - Wire, wireless, fiber optic, smoke signals ...
 - May be point-to-point or broadcast
- <u>Switches</u> move bits between links
 - Routers, gateways, bridges, CATV headend, PABXs, ...
- <u>Hosts</u> are the communication endpoints
 - PC, PDA, cell phone, tank, toaster, ...
 - Hosts have names
- Much other terminology: channels, nodes, intermediate systems, end systems, and much more.


Example – Local Area Network

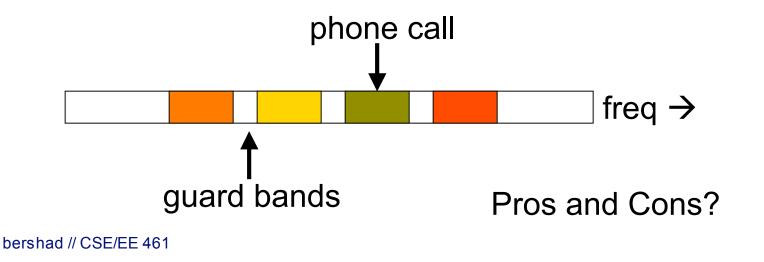
bershad // CSE/EE 461

Example – An Internetwork

- Internetwork is a network of networks
- The Internet is a global internetwork in which all participants speak a common language

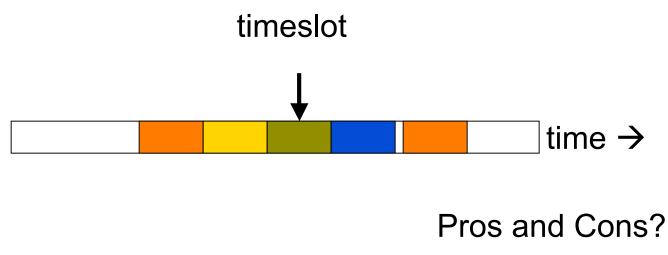
 IP, the Internet Protocol
- Sharing is everywhere

Sharing


- The Vacation Home Problem
 - N families
 - One Vacation Home.
- How to coordinate access to the home?
 - Option 0: Do nothing
 - Conflicts
 - Option 1: Time share
 - Each family gets the whole vacation every N weeks
 - Option 2: Space share
 - Each family gets one bedroom in the vacation home anytime they want it
- *Q*: *Why not just buy more homes?*

A Network is like a vacation home

- Problem: How to multiplex (share) a resource amongst multiple users, especially sharing a network?
- First Solution: Static Partitioning
 - Like the condo solution
 - Families are nodes
 - Home is the link
- Really, *two* kinds of static partitioning
 - (Synchronous) Time Division Multiplexing (TDM, STDM)
 - ("the smiths get it even weeks, the jones get it the others")
 - Frequency Division Multiplexing (FDM)
 - ("the smiths stay on the first floor, the jones get the second")


(STATIC) Frequency Division Multiplexing

- Simultaneous transmission in different frequency bands
- "Speaking at different pitches"
 - (or, staying on different floors)
 - Eg, Take One 3MHz signal and break it into 1000 3KHz signals
 - Analog: RadiøTV, AMPS cell phones (800MHz)
 - Also called Wavelength DMA (WDMA) for fiber

(STATIC) Time Division Multiplexing

- "Slice up" the given frequency band between users
- Speaking at different times
 - Staying at different times
 - Digital: used extensively inside the telephone network
 - T1 (1.5Mbps) is 24 x 8 bits / 125us; also E1 (2Mbps, 32 slots)

Statistical Multiplexing

- Static partitioning schemes (which assume peak rate) are not wellsuited to data communications because peak rate >> average rate.
 - In other words, it's rare for the whole family to show up in a given week. Much more likely is nobody shows up, or just a few do.
 - Consequently... rooms, or whole vacation homes, go unused.
- Consider one condo, multiple floors, but only one bathroom.
- If we share on demand we can support more users
 - Based on the statistics of their transmissions
 - If you need more, you get more. If you need less, you get less.
 - It's all supposed to "balance out" in the end
 - Occasionally we might be oversubscribed
 - This is called <u>statistical multiplexing</u>
- Statistical multiplexing is heavily used in data networks

Statistical Multiplexing

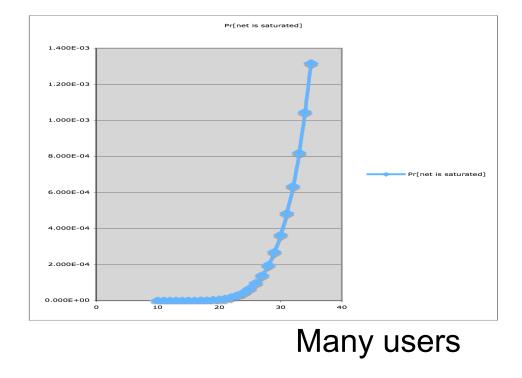
- Consider:
 - 10 Mbps *peak bandwidth* (*p*)
 - Each node sends at 1 Mbps (*b*)
 - Each node is idle 90% of the time.
 - Prob[Node is sending] = 10% = .1
- How many nodes (n) can this system support?
 - Static partitioning: n = p/b
 - First mbps to first node, second to second node, ...
 - Can support 10 nodes with probability 1
 - Q: what is probability of supporting 11 nodes?
 - Statistical multiplexing: n is defined with some probability
 - *pn* = # *peak nodes* (nodes required to saturate)
 - Pr[Node_i can send] = 1-Pr[saturated]
 - Pr[saturated] = Pr[*p*/*b* nodes are sending]
 - For example, consider a network with 10 nodes
 - » $Pr[saturated] = 10^{-10} = 0.000000100\%$
 - » Not likely! So keep adding users ...

How many nodes can we add?

- Equivalent to asking "what is the probability that at least p/b of n nodes are sending at the same time?"
 - how many different ways can k = p/b nodes be sending at once?

To select k objects from a set of n objects is denoted as P(n, k). To calculate:

$$P(n,k) = n(n-1)(n-2)\dots(n-k+1) = \frac{n!}{(n-k)!}$$


But order doesn't matter --> C(n,k) = P(n,k) / k!

- Or, how many different ways can k = p/b nodes be sending at once?
- Pr[saturated] = Pr[p/b nodes are sending] * C(n,k)

- For n = 20, there are C(n,k) = 184756 ways in which 10 nodes can be sending, so Pr[saturated] = .000018.

Turning the crank

	NODES	# ways to get p/b sending and p/b not sending (C(n,p/b))	Pr[net is saturated]
) 0 1	1		
1	2		
2 3	3		
3	4		
	5		
4 5 6	6		
	7		
7	8		
8	9		
9	10	1	1.000000E-10
)	11	11	9.900000E-10
1	12	66	5.3460000E-09
2	13	286	2.0849400E-08
2 3	14	1001	6.5675610E-08
1	15	3003	1.7732415E-07
5	16	8008	4.2557795E-07
5	17	19448	9.3019181E-07
7	18	43758	1.8836384E-06
8	19	92378	3.5789130E-06
)	20	184756	6.4420434E-06
)	21	352716	1.1068602E-05
	22	646646	1.8263193E-05
2	23	1144066	2.9080623E-05
3	24	1961256	4.4867246E-05
2 3 4 5 6	25	3268760	6.7300870E-05
5	26	5311735	9.8427522E-05
5	27	8436285	1.4069346E-04
7	28	13123110	1.9697084E-04
8	29	20030010	2.7057573E-04
•	30	30045015	3.6527724E-04
)	31	44352165	4.8529691E-04
) L	32	64512240	6.3529777E-04
2	33	92561040	8.2036277E-04
2 3	34	131128140	1.0459625E-03
4	35	183579396	1.3179128E-03

NOTE: this assumes =p/b, not >= p/b!

bershad // CSE/EE 461

Key Concepts

- Scalability
- Networks are comprised of links, switches and hosts
- Networks are used to share distributed resources
- Multiplexing lets multiple users share a resource
 - Static multiplexing is simple, but not efficient unless the workloads are static
 - Statistical multiplexing is more complicated and not guaranteed to work
 - but well-suited to data communications (bursty traffic)