
CSE/EE 461
Network Security

Chapter 8

2

What do we mean by “Network
Security”?

• Networks are fundamentally shared
– Sharing a resource is “safe” if everybody behaves well.
– It becomes unsafe if people badly

• Three ways to behave badly
– Eavesdrop
– Forge
– Transform

• Leads to three desirable security properties
– Privacy: messages can’t be eavesdropped
– Authenticity: messages were sent by the right party
– Integrity: messages can’t be tampered with

• A & I are two sides of the same coin

3

Network Security vs. Security

• Network Security
– Messages are what they say they are
– Messages say what they are only to the right parties

• Security
– The system behaves as specified
– Can have N.S. without S.
– Example:

• Secure log in lets me log in.
• A setuid root program lets me crash the system

– Not a problem with network security

4

Why is security hard to achieve?

• It is an ill-defined goal
• It is hard to express goal

– you can do X, but you can’t do Y
– What are X and Y?

• It’s a negative goal
– requires that you know there are no vulnerabilities
– like proving there are no bugs

• It’s a valuable goal to subvert

5

Approaches at 10,000 ft

• Locks
– Physical security

• Tackle the problem of sharing directly
– “Security through obscurity”

• Hope no-one will find out what you’re doing!
– Throw math at the problem

• Cryptography
• Alarms

– Watch for the bad guys
• Beware the false positives/negatives

• Fingerprints
– Audit trails

• Tracebacks
– Hard not to get lost in a sea of data

6

Achieving Network Security

• Use something secret to scramble the data
• Put the scrambled data on the wire
• Use something related to the secret to unscramble the

data
• Two kinds of secrets

– Symmetric
• Sender/receiver share the same secret

– Assymetric
• Sender’s and receiver’s secret related computationally, but

intractable to discover one from the other

7

Use Encryption for Privacy

• Cryptographer chooses functions E, D and keys KE, KD

• Cryptanalyst tries to “break” the system
– Depends on what is known: E and D, M and C?

Sender
Plaintext (M)

Encrypt
E(M,KE)

Ciphertext (C)

Receiver
Plaintext (M)

Decrypt
D(C, KD)

8

Two Basic Encryption Strategies

• Symmetric: Secret Key
– Bob and Alice each share a secret (K)
– The secret is used to encrypt communication between Bob and

Alice.
• D(E(M,K),K) = M

– DES
• Assymetric: Public Key (RSA)

– Bob has a secret key (K) and a matching public key (K’)
• D(E(M, K’), K) = M
• D(E(M, K), K’) = M

9

Secret Key Functions (DES)

• Single key (symmetric) is shared between parties
– Often chosen randomly, but must be communicated
– Turns out to be a hard problem (key distribution)

Plaintext

Encrypt with
secret key

Ciphertext

Plaintext

Decrypt with
secret key

10

DES Is a Bit Scrambler

• The bits go in one
way and come out
another according to
some scrambling rules

• Unscrambling runs it
backwards
– Not unlike the WW2

German Cyphers
(ENIGMA)

11

Initial permutation

Round 1

Round 2

Round 16

56-bit
key

Final permutation

…

+

F

Li – 1 Ri – 1

Ri

Ki

Li

Each Round:

DES uses a 64 bit key (56 + 8)
Message encrypted 64 bits at a time
16 rounds in the encryption
Each round scrambles 64 bits

DES as a Digital Scrambler

12

On the Hardness of DES

• Exhaustive search is the only known attack
– Not much is known about the unknown attacks

• Size of key space determines cost of attack
– Key space needs to track Moore’s law just to stay even (future

proof keys)
• a key that’s just barely long enough today won’t be long

enough in a few years
– today’s 52 bit DES key is “equivalent” to a 40 bit key from 20

years ago
– Easy to parallelize

IDEA
DES3/3

13

But more fundamentally

• Secret key systems are vulnerable because it’s hard to keep a secret.
– you’ve got to tell somebody your secret to use it.

• There’s no protection from blabbermouths.
– Also, key needs to be kept somewhere in order to use it.

• user can type it in
– but the keys won’t be very long

• keep it in a file?
– that won’t work unless the file is encrypted

• keep it on a removable device
– smartcard, PCMCIA

• Needed is a strategy that doesn’t require me to tell you my secret
and expect it to remain a secret forever.

• Assymetric

14

Public Key Functions (RSA)

• Only holder of appropriate private key can read message
• Public and private key related mathematically

– Public key can be published; private is a secret
– Very Hard to deduce private key from public key

• Equivalent to factoring very large numbers
– For details, take a crypto class

Plaintext M

Encrypt with
public key

Ciphertext

Plaintext M

Decrypt with
private key

E(M, K)

D(E(M, K),K’)

E(M, K)

15

Authenticates as well as
Encrypts

• Digital Signature

Plaintext (signature)

Encrypt (sign) with

PRIVATE key
Ciphertext

Plaintext

Decrypt (verify) with

PUBLIC key

16

Algorithms vs. Protocols

• Algorithms let you encode the bits
• Protocols tell you how to decide if the bits are valid
• Looks pretty easy
• But in practice, it’s pretty hard

– what assumptions do we make?
• Most failures come from attacks on the protocol and not

the algorithm

17

Example Authentication Protocol

• Three-way handshake for mutual authentication
– Client and server share secrets, e.g., login password.
– Use to construct session key

Client Server

ClientId, E(x, CHK)

E(y + 1, CHK)

E(SK, SHK)

E(x + 1, SHK), E(y, SHK)

Client authenticates
server here

Server authenticates
client here

Session key
exchanged E(info, SK)

CHK, SHK: Handshake keys
SK: Session key

Further msgs encrypted with SK

Simple Assumptions Can
Lead to Weaknesses

• No protection against
replay
– Client assumes that it is

receiving a fresh key
• This doesn’t mean the

protocol is broken, only
that it makes certain
assumptions.

Client

ClientId, E(x, CHK)

E(y + 1, CHK)

E(SK, SHK)

E(x + 1, SHK), E(y, SHK)

E(info, SK)

Bad Guy

Bad Guy gets the “info”

Why did this weakness slip by?

• Eyeball verification is not very effective
• Assumptions are often not explicit

– eg, the key is fresh
• An attacker will leverage these assumptions to break

the protocol
• What’s needed is a way to reason about authentication

A Logic of Authentication

• Seminal paper published in 1991 SOSP by Burrows,
Abadi and Needham
– BAN Logic

• Simple idea
– make explicit assumptions in an authentication protocol
– describe protocol by formal algebra

• make explicit initial states
• derive belief relationships through state transitions
• final state tells us what we can know

Example Questions

• What does this protocol achieve?
• Does this protocol need more assumptions than another

one?
• Does this protocol do anything unnecessary that could

be left out without weakening it?
• Does this protocol encrypt something that could be sent

in the clear
• See BAN paper if you want to know more

22

Cryptography in Protocols

• These techniques can be applied at different levels:
– NETWORK: IP packets (IPSEC)
– TRANSPORT: STCP
– SESSION: SSLTLS, Secure HTTP
– APPLICATION: Email (PGP)

Unencrypted Part Encrypted Part

23

A Faster “RSA Signature”

• Suppose you have a very big “message” that you want
to authenticate
– Encryption can be expensive, e.g., RSA ~1Mbps

• To speed up, let’s sign just the checksum instead!
– Check that the encrypted bit is a signature of the checksum
– Problem: Easy to alter data without altering checksum

• Answer: Cryptographically strong “checksums” called
message digests
– computationally difficult to choose data with a given checksum
– But they still run much more quickly than encryption
– MD5 (128 bits) is the most common example

24

Message Digests (MD5, SHA)

• Act as a cryptographic checksum or hash
– Typically small compared to message (MD5 128 bits)
– “One-way”: infeasible to find two messages with same digest

Transform

Initial digest Message (padded)

Transform

Message digest

512 bits 512 bits 512 bits

…

…

Transform

