
CSE/EE 461

Congestion Control

Or, When to retransmit

2

This Lecture

• Focus
– How do we decide when to retransmit?

• Topics
– RTT estimation

– Karn/Partridge algorithm

– Jacobson/Karels algorithm Physical

Data Link

Network

Transport

Session

Presentation

Application

3

How Fast Should a Sender Send?

• No greater than the bottleneck bandwidth

• Only as fast as packets can be received
– Network limitation

– Receiver limitation

• Advertised receiver windows address receiver
limitation

• But how to know what the network limitation is?

4

TCP is “Self-Clocking”

• Observation: acks pace transmissions at approximately
the botteneck rate

Sink
45 Mbps T3 linkRouter

Source
100 Mbps Ethernet

• Buffers at routers used to absorb bursts when input rate > output

• Loss (drops) occur when sending rate is persistently > drain rate

Destination
1.5-Mbps T1 link

Router

Source
2

Source

1

100-Mbps FDDI

10-Mbps Ethernet

Congestion from Multiple Sources

Packets queued here

6

A Motivating Scenario
Packet size if 512 bytes

Receiver window size is

16KB.

Bottleneck router buffer

size is 15 KB.

Maximum data bandwidth

is about 26KB/s (230/8 -

(sizeof(MAC hdr) +

sizeof(IPhdr) +

sizeof(TCP))

Sender ReceiverTCP

10Mb/s

7

TIME (SEC)

S
e

q
u

e
n

c
e

 #

8

Congestion Collapse

• In the limit, early retransmissions lead to congestion collapse
– Sending more packets into the network when it is overloaded

exacerbates the problem of congestion

– Network stays busy but very little useful work is being done

• This happened in real life ~1987
– Led to Van Jacobson’s TCP algorithms, which form the basis of

congestion control in the Internet today [See “Congestion Avoidance
and Control”, SIGCOMM’88]

– Observed 1000x bandwidth reduction between two hosts separated by
400 yards.

– Led to researchers asking two questions:
• Was TCP/IP misbehaving?

• Could TCP/IP be “trained” to work better under ‘absymal
network conditions’

9

1988 Observations on Congestion

Collapse

• Implementation, not the protocol, leads to collapse
• “Obvious” ways of doing things lead to non-obvious

and undesirable results
– “send eff-wind-size # packets, wait rtt, try again”

• Remedial algorithms achieve network stability by
forcing the transport connection to obey a ‘packet
conservation’ principle.

• For a connection in ‘equilibrium, that is, running stably
with a full window of data in transit, the packet flow is
“conservative”:
– a new packet is not put into the network until an old packet

leaves.

10

If only…

• We knew RTT and Current Router Queue Size,
– Then we would send MIN(Router Queue Size, Effective

Window Size)

– And not resend a packet until it had been sent RTT ago.

• But we don’t know these things, so we have to figure
them out.

• And they may change dynamically due to other data
sources

11

The Packet Conservation Concept

1. The connection must reach equilibrium.
– Hurry up and stabilize!

– When things get wobbly, put on the brakes
and reconsider

2. A sender must not inject a new packet
before an old packet has exited.
– A packet “exits” when the receiver picks it

up or it is lost

– Ack or packet timeout signals that a packet
has “exited.”

– Acks are easy to detect.

– Good timeouts are harder…. All about
estimating RTT.

3. Equilibrium is lost because of resource
contention along the way.
– Competing stream appears/disappears

• Connection flow should obey
a “conservation of packets”
principle

– For a connection in
equilibrium (running stably
with a full window of data in
transit):

• New packet is not put
into the network until an
old packet leaves

12

1. The connection must reach equilibrium.

Packet Conservation

13

1. Getting to Equilibrium -- Slow Start

• Goal
– Quickly determine the appropriate window size

• Strategy
– Exponential probe

• Tactics
– Introduce congestion_window (cwnd)
– When starting off, set cwnd to 1

– For each ack received, add 1 to cwnd
– When sending, send the minimum of receiver’s advertised window

and cwnd
– On timeout, cut cwnd in half

14

Cwnd doubles every RTT;

Opening the window of size

W takes time (RTT)log2W.

•Will not transmit at more than twice the max bw, and
for no more than RTT.

–(bw delay product)

15

16

2. A sender must not inject a new packet before an old packet has exited.

17

2. Packet Injection. Estimating RTTs

• Do not inject a new packet until an old packet has left.

– 1. Ack tells us that an old packet has left.

– 2. Timeout expires tells us also.

• Gotta estimate RTT properly.

• Strategy 1: Fixed RTT.

– Simple, but probably wrong. (certainly not adaptive)

• Strategy 2: Estimate based on past behavior.

Tactic 0: Mean

Tactic 1: Mean with exponential decay

Tactic 2: Tactic 1 + safety margin

safety margin based on current estimate of error in Tactic 1

18

Simple Estimator (RFC793)

• EstimatedRTT = (1-g)(EstimatedRTT) + g(SampledRTT)

• Exponentially-weighted moving average (0 <= g <= 1)

• Smoothes the samples with a gain of g
– Big g can be jerky

– Small g can be slow to respond

• Stable is better than precise. Typically, g = .1 or .2
– Insight: Respond conservatively to good news, and we already have a way to

tell really bad news.

• Conservatively set timeout to small multiple of the estimate in order to
account for variance

Timeout = 2(EstimatedRTT)

• Better to wait “too long” than not long enough. (Why?)

19

Estimated

Sampled

Loaded Region

20

Bad Estimators and the Bad Things

They Do

• Problem:
– Variance in RTTs gets large as network gets loaded

– So an average RTT isn’t a good predictor when we need it most

• Time out too soon, unnecessarily drop another packet onto
the network.

• Timing out too soon occurs during load increase

– if we time out when load increases but packet not yet lost,
then we’ll inject another packet onto the network which will
increase load, which will cause more timeouts, which will
increase load, until we actually starting dropping packets!

21

Jacobson/Karels Algorithm

• EstimatedRTT + “safety margin”
– large variation in EstimatedRTT --> larger safety margin

• First, estimate how much SampledRTT deviates from
EstimatedRTT
– DevRTT = (1-b) * DevRTT + b * |SampledRTT - EstimatedRTT|

• typically, b = .25

• Then, set timeout interval as:
– Timeout = EstimatedRTT + k * DevRTT

– k is generally set to 4

• Thus,
– Timeout is close to EstimatedRTT when the Estimate is good,

– Timeout quickly moves away from EstimatedRTT (4x!) when the
Estimate is bad.

22

Estimate with Mean + Variance

23

Footnote: Karn/Partridge Algorithm

• Problem: RTT for retransmitted packets ambiguous

• Solution: Don’t measure RTT for retransmitted packets and do not
relax backed off timeout until valid RTT measurements

Sender Receiver

Original transmission

ACK

S
a
m

p
le

R
T

T

Retransmission

Sender Receiver

Original transmission

ACK

S
a
m

p
le

R
T

T

Retransmission

24

3. Equilibrium is lost because of resource contention along the way.

(room for more? Room for less?)

Source
2

100-Mbps FDDI

Congestion from Multiple Sources

Destination
1.5-Mbps T1 link

Router

Source

1 10-Mbps Ethernet

Packets queued here

Packets Lost Here

26

In Real Life -- 30KB/s link

27

Four Simultaneous Streams

10KB/s

2@6KB/s

1KB/s

23/30 KB/s

Not very fair

100 sec

1000

600

28

Implicit Signals from the Network

• The network is not saturated: Send even more
• The network is saturated: Send less

• ACK signals that the network is not saturated.

• A Lost packet (no ACK) signals that the network is saturated
– Assumption here??

• Leads to a simple strategy:
– On each ack, increase congestion window (additive increase)

– On each lost packet, decrease congestion window (multiplicative
decrease)

• Why increase slowly and decrease quickly?
– Respond to good news conservatively, but bad news aggressively

29

AIMD (Additive Increase/Multiplicative Decrease)

• How to adjust probe rate?

• Increase slowly while we
believe there is bandwidth
– Additive increase per RTT

– Cwnd += 1 packet / RTT

• Decrease quickly when
there is loss (went too far!)
– Multiplicative decrease

– Cwnd /= 2

Source Destination

…

30

With Additive Increase/Multiplicative

Decrease

2@10KB/s

2@4KB/s

31

TCP Sawtooth Pattern

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

C
w

n
d
 (

K
B

)

T ime (seconds)

70

30

40

50

10

10.0

32

Combining Slow Start and AIMD

• Slow start is used whenever the connection is not running with
packets outstanding
– initially, and after timeouts indicating that there’s no data on the wire

• But we don’t want to overshoot our ideal cwnd on next slow start,
so remember the last cwnd that worked with no loss
– Ssthresh = cwnd after cwnd /= 2 on loss
– Switch to AIMD once cwnd passes ssthresh

ssthresh

33

Key Concepts

• Packet conservation is a fundamental concept in TCP’s
congestion management
– Get to equilibrium

• Slow Start

– Do nothing to get out of equilibrium

• Good RTT Estimate

– Adapt when equilibrium has been lost due to other’s attempts
to get tøstay in equilibrium

• Additive Increase/Multiplicative Decrease

• The Network Reveals Its Own Behavior

34

Key Concepts (next level down)

• TCP probes the network for bandwidth, assuming that
loss signals congestion

• The congestion window is managed to be additive
increase / multiplicative decrease
– It took fast retransmit and fast recovery to get there

• Slow start is used to avoid lengthy initial delays
– Ramp up to near target rate and then switch to AIMD

35

A Fast Algorithm for RTT Mean and

Variation

• Let a = estimated round trip time, v = estimated error, g = gain (0 <g < 1), m = new sampled
round trip time

• a = (1-g)a + gm // compute new estimate using gain

• a = a + g(m-a) // rearrange terms:
– a is a prediction of next measurement, and (m-a) is the “error” in that prediction.

– so, the new prediction is the old prediction plus some fraction of the prediction error.

– The prediction error is the sum of two components:

• Er = noise (random unpredictable effects like fluctations in competing traffic)

• Ee = bad choice of a

• a = a + g Er + g Ee

– The term g Ee kicks a in the right direction towards the real estimate

– The term g Er kicks it off in the random direction

– Over many samples, the random errors cancel each other so we get closer and closer to the real estimate

– But, g represents a compromise.

» Big ‘g’ means that we get a lot of value out of a prediction error, but it also means that the
random errors introduce a lot of noise.

– Since g Ee moves a in the right direction regardless of g, we’re better off using a small g and waiting
a bit longer to get a better estimate than to very quickly get a lousy estimate

• Or,
– Err = (m - a) // Sampled Error

– a = a + g (Err) // Estimate of round trip time

– v = v + g(|Err| - v) // Estimate of error

• Not necessary to use same gain; in general want to force timer to go up

