CSE/EE 461
Getting Started with Networking

Basic Concepts

A PROCESS is an executing program somewhere.
- Eg, “./a.out”
* A MESSAGE contains information sent by one PROCESS to
ANOTHER
- Eg, “please get www.cs.washington.edu/index.html”
¢ A COMMUNICATIONS ENDPOINT is the name of some source
or destination of a message
— Host: www.cs.washington.edu, Port: 80
e A PROTOCOL is the SET-OF-RULES governing the transmission
of MESSAGES

— Protocol: TCP/IP
* A MESSAGING-APT is the programming interface used by
PROCESSES to send / receive MESSAGES
¢ Typically,
— OS implements the PARTS IN RED
- Application provides/consumes the MESSAGES.




Example: TCP Delivery

Application process Application process
=]

—J
APP L1 write L] Read
bytes - bytes
[ [
TCP TCP
oS Send buffer

. [
Transmit segments

[ Segment| [ Segment]---[ Segment]|

The API

Unix SOCKETS




Berkeley Sockets

* Networking protocols are implemented as part of the OS
— The networking API exported by most OS’s is the socket interface
— Originally provided by BSD 4.1c ~1982.
e The principal abstraction is a socket
— Point at which an application attaches to the network
— Defines operations for creating connections, attaching to network,
sending /receiving data, closing.
¢ Two primary protocols used
— Reliable Connections (TCP)
e Like a telephone
- Unreliable Datagrams (UDP)
¢ Like postcards

The Client/Server Paradigm

e A Server is a long lived process that LISTENS in at some well-
known COMMUNICATIONS-ENDPOINT

— Awaiting a new request
— Satisfy the new request
— Send a response
— Do it again
* A Client is a short lived process that makes requests on Servers.
Format a message containing the request
Send the message to the Server
Await the response
— Process the response
® (lassic Example:
- WWW
e Web Servers (Apache, IIS, etc)
e Web Clients (IE, Safari, Firefox)
— Clients CONNECT to SERVERS by means of an OS API




Client/Server Connection API

Block until

Server

Client

connect
IE Data (request)
Process
request Dat X
Send ata (reply)
Recv()
Structure
e Server e (lient

Make a “rendezvous socket” on which

o accept requests — Make a local “socket” on which

to send requests to the

e socket
Associate an “address” with that rendezvous address
socket so that others can submit e socket
requests
CE bind — Connect to the rendezvous
Ready the socket for requests address by means of the local
e listen socket
Await a request on the rendezvous ® connect
socket - Send the request
® accept . it
— Creates a SECOND socket write
Read the request (from the SECOND — Await the response
socket) e read
e read
Do the request
o XX

Send the response
* write




Socket call

* Means by which an application attached to the network
- #include <sys/socketh>...

* int socket(int family, int type, int protocol)

* Family: address family (protocol family)
— AF_UNIX, AF_INET, AF_NS, AF_IMPLINK

e Type: semantics of communication
- SOCK_STREAM, SOCK_DGRAM, SOCK_RAW
— Not all combinations of family and type are valid

® Protocol: Usually set to 0 but can be set to specific value.
— Family and type usually imply the protocol

* Return value is a handle for new socket

Bind call

Typically a server call

Binds a newly created socket to the specified address
— int bind(int socket, struct sockaddr *address, int addr_len)

Socket: newly created socket handle

Address: data structure of address of local system

— IP address (host identifier) and port number (endpoint on identified
host)

SOCKET and PORT are not the same concept
— Socket: “widget” that a process uses to manipulate its endpoint
— Port: hostwide name of a communication’s endpoint
— Address: hostname.port pair
— For comparison:
¢ Socket == file descriptor
e port == file name,
¢ address == network file name




Listen call

* Used by connection-oriented servers to indicate an
application is willing to receive connections

e Int(int socket, int backlog)
* Socket: handle of newly creates socket

* Backlog: number of connection requests that can be
queued by the system while waiting for server to
execute accept call.

Accept call

e A server call

 After executing listen, the accept call carries out a
passive open (server prepared to accept connects).

* int accept(int socket, struct sockaddr *address, int addr_len)

e It blocks until a remote client carries out a connection
request.

¢ When it does return, it returns with a new socket that

corresponds with new connection and the address
contains the clients address




Connect call

A client call
Client executes an active open of a connection

— int connect(int socket, struct sockaddr *address, int addr_len)
— How does the OS know where the server is?

Call does not return until the three-way handshake
(TCP) is complete

Address field contains remote system’s address
Client OS usually selects random, unused port

Input and Output

e After connection has been made, application uses
send /recv to data
e int send(int socket, char *message, int msg_len, int flags)
- Send specified message using specified socket
e int recv(int socket, char *buffer, int buf_len, int flags)
— Receive message from specified socket into specified buffer
® Or can use read / write
— int read(int socket, char* buffer, int len)
— int write(int socket, char* buffer, int len);
e Or can sometimes use sendtarecvirom
¢ Or can use sendmsg, recvmsg for “scatter / gather”




Connection Establishment

e Both sender and receiver must be ready before we start
to transfer the data
— Sender and receiver need to agree on a set of parameters
- e.g., the Maximum Segment Size (MSS)
e This is signaling
— It sets up state at the endpoints
— Compare to “dialing” in the telephone network

e In TCP a Three-Way Handshake is used

Sample Code




SERVER int main{int arge
int sockfd, newsockfd, portno;
socklen_t clilen
char buffer[256]
struct sockaddr serv_addr, cli_addr;
int n
2y {
fprintf{stderr, "ERROR, no port wvidedin");
it{1);

bz

portno

serv_addr.sin_fami ly = AF_INET;

St ddr .sin_addr .s_addr INADD 'H

= ddr .sin_por

if {bind{sockfd, } &serv_addr,

siz

k) &cli_addr,

3

255 Y.
3

{newsockfd,buf fer, 255
8) error{"ERROR readi

el ckfd,"l got your m
@) error{"ERROR writing t

int main{int arge, char *argv[]}
CLIENT < i °

orthn",

K_STREAM,

avl11);

return




Running it...

Run 1 1 145 e 2] borh t localhost 9998

Run 2

erminal — server — 60x13 0606 Terminal — tcsh — 63x13

How are these two runs different?

Observing Communication

Messages are sent via NETWORK
INTERFACES

eg, IIIOO/I, IlenO/I
The tcpdump program allows us to observe
network traffic.

“man tcpdump” for more information!

10



Establishing Connections

erminal — serve

006 Terminal — tcsh — 63x13
i bersha /

44x30

erminal — tcpdump

ning on lo@,
1

mp 16:
op,nop, ti
nop, time:

Each line is a network message
sent between the processes. What is this “conversation” saying?

Protocol vs. Message

0 THIS 1S A TEST XX

Terminal — tcpdump — 144x31

tcpdump -i 100 -x

The data itself

22

11



TCPDUMP and shared responsibilities

e Gives you everything you need to know to deconstruct
network traffic
* Special version installed on dept’l linux server for
general use
— (typically restricted in conformance with lab policy)
e In general, be careful when you use the network.
- It's a shared resource.
- People get unhappy when you break it.

23

12



