
1

CSE/EE 461
Getting Started with Networking

2

Basic Concepts

• A PROCESS is an executing program somewhere.
– Eg, “./a.out”

• A MESSAGE contains information sent by one PROCESS to
ANOTHER
– Eg, “please get www.cs.washington.edu/index.html”

• A COMMUNICATIONS ENDPOINT is the name of some source
or destination of a message
– Host: www.cs.washington.edu, Port: 80

• A PROTOCOL is the SET-OF-RULES governing the transmission
of MESSAGES
– Protocol: TCP/IP

• A MESSAGING-API is the programming interface used by
PROCESSES to send/receive MESSAGES

• Typically,
– OS implements the PARTS IN RED
– Application provides/consumes the MESSAGES.

2

3

Example: TCP Delivery

Application process

Write
bytes

TCP
Send buffer

Segment Segment Segment
Transmit segments

Application process

Read
bytes

TCP
Receive buffer

…

… …

OS

APP

4

The API

Unix SOCKETS

3

5

Berkeley Sockets

• Networking protocols are implemented as part of the OS
– The networking API exported by most OS’s is the socket interface
– Originally provided by BSD 4.1c ~1982.

• The principal abstraction is a socket
– Point at which an application attaches to the network
– Defines operations for creating connections, attaching to network,

sending/receiving data, closing.
• Two primary protocols used

– Reliable Connections (TCP)
• Like a telephone

– Unreliable Datagrams (UDP)
• Like postcards

6

The Client/Server Paradigm

• A Server is a long lived process that LISTENS in at some well-
known COMMUNICATIONS-ENDPOINT
– Awaiting a new request
– Satisfy the new request
– Send a response
– Do it again

• A Client is a short lived process that makes requests on Servers.
– Format a message containing the request
– Send the message to the Server
– Await the response
– Process the response

• Classic Example:
– WWW

• Web Servers (Apache, IIS, etc)
• Web Clients (IE, Safari, Firefox)

– Clients CONNECT to SERVERS by means of an OS API

4

7

Client/Server Connection API
Server

Socket()

Bind()
Client

Socket()
Listen()

Accept()

Recv()

Send()

Connect()

Send()

Recv()

Block until
connect

Process
request

Connection Establishment.

Data (request)

Data (reply)

8

Structure

• Server
– Make a “rendezvous socket” on which

to accept requests
• socket

– Associate an “address” with that
socket so that others can submit
requests

• bind
– Ready the socket for requests

• listen
– Await a request on the rendezvous

socket
• accept

– Creates a SECOND socket
– Read the request (from the SECOND

socket)
• read

– Do the request
• XX

– Send the response
• write

• Client
– Make a local “socket” on which

to send requests to the
rendezvous address

• socket
– Connect to the rendezvous

address by means of the local
socket

• connect
– Send the request

• write
– Await the response

• read

5

9

Socket call

• Means by which an application attached to the network
– #include <sys/socket.h>…

• int socket(int family, int type, int protocol)
• Family: address family (protocol family)

– AF_UNIX, AF_INET, AF_NS, AF_IMPLINK
• Type: semantics of communication

– SOCK_STREAM, SOCK_DGRAM, SOCK_RAW
– Not all combinations of family and type are valid

• Protocol: Usually set to 0 but can be set to specific value.
– Family and type usually imply the protocol

• Return value is a handle for new socket

10

Bind call

• Typically a server call
• Binds a newly created socket to the specified address

– int bind(int socket, struct sockaddr *address, int addr_len)
• Socket: newly created socket handle
• Address: data structure of address of local system

– IP address (host identifier) and port number (endpoint on identified
host)

• SOCKET and PORT are not the same concept
– Socket: “widget” that a process uses to manipulate its endpoint
– Port: hostwide name of a communication’s endpoint
– Address: hostname.port pair
– For comparison:

• Socket == file descriptor
• port == file name,
• address == network file name

6

11

Listen call

• Used by connection-oriented servers to indicate an
application is willing to receive connections

• Int(int socket, int backlog)
• Socket: handle of newly creates socket
• Backlog: number of connection requests that can be

queued by the system while waiting for server to
execute accept call.

12

Accept call

• A server call
• After executing listen, the accept call carries out a

passive open (server prepared to accept connects).
• int accept(int socket, struct sockaddr *address, int addr_len)
• It blocks until a remote client carries out a connection

request.
• When it does return, it returns with a new socket that

corresponds with new connection and the address
contains the clients address

7

13

Connect call

• A client call
• Client executes an active open of a connection

– int connect(int socket, struct sockaddr *address, int addr_len)
– How does the OS know where the server is?

• Call does not return until the three-way handshake
(TCP) is complete

• Address field contains remote system’s address
• Client OS usually selects random, unused port

14

Input and Output

• After connection has been made, application uses
send/recv to data

• int send(int socket, char *message, int msg_len, int flags)
– Send specified message using specified socket

• int recv(int socket, char *buffer, int buf_len, int flags)
– Receive message from specified socket into specified buffer

• Or can use read/write
– int read(int socket, char* buffer, int len)
– int write(int socket, char* buffer, int len);

• Or can sometimes use sendtørecvfrom
• Or can use sendmsg, recvmsg for “scatter/gather”

8

15

Connection Establishment

• Both sender and receiver must be ready before we start
to transfer the data
– Sender and receiver need to agree on a set of parameters
– e.g., the Maximum Segment Size (MSS)

• This is signaling
– It sets up state at the endpoints
– Compare to “dialing” in the telephone network

• In TCP a Three-Way Handshake is used

Sample Code

9

17

SERVER

18

CLIENT

10

19

Running it…

Run 1

Run 2

How are these two runs different?

Observing Communication

Messages are sent via NETWORK
INTERFACES

eg, “lo0”, “en0”
The tcpdump program allows us to observe
network traffic.

“man tcpdump” for more information!

11

21

Establishing Connections

Each line is a network message
sent between the processes. What is this “conversation” saying?

22

Protocol vs. Message

tcpdump -i lo0 -x

The data itself

12

23

TCPDUMP and shared responsibilities

• Gives you everything you need to know to deconstruct
network traffic

• Special version installed on dept’l linux server for
general use
– (typically restricted in conformance with lab policy)

• In general, be careful when you use the network.
– It’s a shared resource.
– People get unhappy when you break it.

