```
The network is saturated if there are 10 or more people sending. The cumulativ
probability is obtained by computing the probability that
So Pr[exactly i of the n nodes transmit] = ( n ) *(p^i)*(1-p)^(n-i)
where p = probability that a node transmits
3. Book Questions
1.5
(a) total_time = (handshake) +(propagation delay) + (transfer time
    =(2*100)ms +(100/2) ms +(1000*(10^3)*8) bits}=5.583\textrm{sec
(b) The total time will be the same as above, except that we wait for an extra
    So, total_time = 5.583 + 999*(0.1) = 105.483 sec
(c) We send 20 pkts in 1 RTT => 1000 pkts can be sent in 50 RTTs
TT = 5.2 sec
(d) Numpkts sent out till kth RTT = (2^k) ( ' l
    So, num RTTs required for 1000
Note: The answer for (c) and (d) may be different depending on the way in which
(a) total_time = (handshake) + (propagation delay) + (transfer time)
    =(2*80) ms +(80/2) ms + (1500*(10^3)*8) bits
(b) The total time will be the same as above, except that we wait for an extra
    So, total_time = 1.4 + 1499*(0.08)=121.32 sec
(c) We send 20 pkts in l l RTT => 1500 pkts can be sent in 75 RTTs
    total_time }\begin{array}{rl}{=(\mathrm{ handshake) + 75*RT}}\\{=}&{77*\textrm{RTT}=6.16 sec}
(d) Numpkts sent out till kth RTT = (2^k) Cil(log2(1000+1)) = 11 RTTS
    *)
1.7
    Propagation delay = = 2*(10^3) km
        100 byte packets: }\begin{array}{l}{10*(-5)=(100*8\mathrm{ bits)/(B bps)}}\\{=>B=8*(10^7)bps=80 Mbps)}
        512 byte packets: }\begin{array}{l}{10*(-5)=(512*8\mathrm{ bits)/(B bps)}}\\{=>B=4096*(10^5)bps=409.6 Mbps}
1.13 Width of a bit =(1 bit) ( (10^.9 bps)=10^(-9) sec = 1 ns 
2.16}\mathrm{ To find the new checksum:
        Complement the old checksum,
            complement the result
        Or equivalently: Take the old checksum, and add 1 or 256 : this gives
```

