This Lecture

• Focus
 – How do we make routing scale?

• Approaches
 – Aggregating
 • Reduce the amount others need to know
 – Hierarchy
 • Reduce the amount I need to know

• Inter-domain routing
 – ASes and BGP
Preliminaries

- Basic issue is how much information is required to effect routing
 - To scale, we want to be able to control it, at the least

![Diagram](image)

Aggregation

- We’ve already seen an example: forwarding tables index networks, not individual hosts

![Diagram](image)
Hierarchy

- We’ve already seen an example: host gateways

Generalizing: Routing Areas

- Routers within an area (only) exchange full link state information
- Limit cost of link state traffic / computation
- (Different areas could have different cost metrics)
- Area border routers (ABRs) summarize area to other ABRs
- ABRs summarize rest of world to an area
- (Areas can have more than one ABR.)
Inter-domain routing

- A domain is an administrative entity
 - A corporation, a university, ...
- Synonym: autonomous system (AS)

- AS’s are the basic building block of the Internet
 - AS’s have id’s (because we need to be able to name them, as we’ll see)

- IP address space assignment is largely hierarchical
 - The Internet Assigned Numbers Authority owns everything
 - It assigns blocks of addresses to Regional Internet Registries (RIRs)
 - They assign to ISPs (reallocators) and end-users (non-reallocators)

Example: IANA ⇒ ARIN ⇒ …

(ARIN = American Registry for Internet Numbers)

http://www.arin.net/statistics/index.html
Example (cont.)

Original Structure of the Internet

- Like address assignment: hierarchical

- What’s “wrong” with this?
Current Structure

- Inter-domain versus intra-domain routing

Inter-Domain Routing

- Network comprised of many Autonomous Systems (ASes) or domains
- To scale, use hierarchy: separate inter-domain and intra-domain routing
- Also called interior vs exterior gateway protocols (IGP/EGP)
 - IGP = RIP, OSPF
 - EGP = EGP, BGP
Inter-Domain Routing

- Border routers summarize and advertise internal routes to external neighbors and vice-versa
- Border routers apply policy
- Internal routers can use notion of default routes
- Core is “default-free”; routers must have a route to all networks in the world

Border Gateway Protocol (BGP-4)

- BGP used in the Internet backbone today

- Features:
 - Path vector routing
 - Application of policy
 - Operates over reliable transport (TCP)
 - Uses route aggregation (CIDR)
Path Vectors

- Similar to distance vector, except send entire paths
 - reachability only; no metrics (but AS hop count)
 - e.g., 7 hears [12,44], advertises [7,12,44] to 321
 - No requirement to advertise to everyone
 - strong avoidance of loops
- AS can choose whatever path it wants for forwarding
- No information about internal networks exchanged
- Goal: support (business) policies
- Modulo policy, shorter paths are chosen in preference to longer ones

An Ironic Twist on Convergence

- Recently, it was realized that BGP convergence can undergo a process analogous to count-to-infinity!

- AS 4 uses path 4 1 X. A link fails and 1 withdraws 4 1 X.
- So 4 uses 4 2 1 X, which is soon withdrawn, then 4 3 2 1 X, …
- Result is many invalid paths can be explored before convergence
Policies

- Choice of routes may depend on owner, cost, AUP, …
 - Business considerations
- Local policy dictates what route will be chosen and what routes will be advertised!
 - e.g., X doesn’t provide transit for B, or A prefers not to use X

Simplified Policy Roles

- Providers sell Transit to their customers
 - Customer announces path to their prefixes to providers in order for the rest of the Internet to reach their prefixes
 - Providers announces path to all other Internet prefixes to customer C in order for C to reach the rest of the Internet
- Additionally, parties Peer for mutual benefit
 - Peers A and B announce path to their customer’s prefixes to each other but do not propagate announcements further
 - Peering relationships aren’t transitive
 - Tier 1s peer to provide global reachability
Multi-Homing

- Connect to multiple providers for reliability, load sharing

- Choose the best outgoing path to P out of any of the announcements to P that we hear from our providers
 - Easy to control outgoing traffic, e.g., for load balancing

- Advertise the possible routes to P to our providers
 - Less control over what paths other parties will use to reach us

Impact of Policies – Example

- Early Exit / Hot Potato
 - “if it’s not for you, bail”

- Combination of best local policies not globally best

- Side-effect: asymmetry
Operation over TCP

- Most routing protocols operate over UDP/IP
- BGP uses TCP
 - TCP handles error control; reacts to congestion
 - Allows for incremental updates
- Issue: Data vs. Control plane
 - Shouldn’t routing messages be higher priority than data?

Key Concepts

- Internet is a collection of Autonomous Systems (ASes)
 - Policy dominates routing at the AS level
- Structural hierarchy helps make routing scalable
 - BGP routes between autonomous systems (ASes)