CSE 461: Introduction to Computer Communications Networks
Autumn 2006

Module 3
Direct Link Networks – Part B

John Zahorjan
zahorjan@cs.washington.edu
534 Allen Center

This Module's Topics

Examples of Specific Protocols

1. Ethernet / IEEE 802.3
2. Wireless / IEEE 802.11
Relationship to the Protocol Stack

<table>
<thead>
<tr>
<th>Application</th>
<th>• Up to the application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presentation</td>
<td>• Encode/decode messages</td>
</tr>
<tr>
<td>Session</td>
<td>• Manage connections</td>
</tr>
<tr>
<td>Transport</td>
<td>• Reliability, congestion control</td>
</tr>
<tr>
<td>Network</td>
<td>• Routing</td>
</tr>
<tr>
<td>Link</td>
<td>• Framing, multiple access</td>
</tr>
<tr>
<td>Physical</td>
<td>• Symbol coding, modulation</td>
</tr>
</tbody>
</table>

Both protocols were designed to allow an evolving set of physical layer implementations (e.g., 802.11b, 802.11g, etc.).

Link layer (can) consists of logical link control (LLC – multiplexing, reliability) and medium access control (MAC – framing, addressing, access control).

Ethernet / 802.3

Developed mid-1970’s at Xerox PARC (along with the mouse, the bit-mapped display, and the personal workstation).

Ethernet goals:
- Cheap
- Reliable
 - Passive network – a cable. No active elements required.
 - Taps are simple enough to be "fail stop."
 - Distributed control – no central arbiter.
 - Statistical multiplexing.

(This shows the original, 3Mbps Ethernet. Modern versions typically look different at the physical level.)
We need…

• To define a policy for acquiring in the medium
 – Ethernet provides physical broadcast \(\Rightarrow\) want to avoid having more than one sender at a time

• To decide how much effort to put into reliability
 – Are all errors left to higher-layer protocols? Any?

• To define a frame format
 – What bits go where?

• To define an addressing scheme
 – How does sender name the intended receiver(s)?

Ethernet MAC

• The basic idea is to let a station send when it has something to send
 – We don’t take turns; we don’t make reservations
 – The Aloha network did just this

• The problem is that we’ll have collisions, resulting in corrupted data

• We like to reduce the time wasted by collisions, without sacrificing distribution / simplicity
Reliability

• How much effort should be put into reliability at this level?

• Hey, it’s a wire, with simple (reliable) attachments.
 – If there is no collision, the odds are very high the packet will be received correctly.
 • Don’t embed into the MAC the overhead of acknowledgements
 – If there is a collision, the odds are not good that the packet will be received correctly.
 • There are no explicit ACKs, so assume the packet is lost in this case

• Upshot:
 – Send until there is no collision (or until you’ve tried enough times that you give up)

Reducing Collision Overheads – CSMA/CD

• Carrier Sense Multiple Access (CSMA)
 – Listen to medium before sending and “defer” if the medium is sensed busy
 • What collision scenarios does this eliminate?
 • Is it still possible to collide?
 • Is it likely?

• Collision Detection (CD)
 – A transmitting host also acts as a receiver
 – Detect a collision when the bit read from the ether is not the same as the one being transmitted
 • If a collision is detected, jam the ether so that all stations know there is a collision
 – What are the benefits of CD?
Implementing CSMA

- What happens when current transmission ends?
 - "1-persistent": go ahead and send
 - "p-persistent": a slotted time version of non-persistent
 - Each slot, assuming no transmission is on-going, start transmitting with probability p
 - Ideal: if N hosts want to have data to transmit, p should be 1/N

- By this definition, Ethernet is 1-persistent
 - It’s “optimistic” – let’s assume I’m the only station waiting to transmit (N=1)

- We’ll see that it also has a mechanism that can be thought of as attempting to dynamically estimate N (and to set p=1/N)

Reacting to Collision Detection

- What happens when a collision occurs?
 - Ethernet takes a collision as a sign it has underestimated N (the number of contending stations)

- Binary exponential backoff
 - A slot time is the maximum possible time between a host starting a transmission and all others hearing it
 - (Obviously, this is a function of the length of the Ethernet)
 - If k consecutive collisions have occurred, pick at random a number of slots between 0 and 2^k-1 and backoff (wait) that long before trying again

 - Binary exponential backoff has been proven stable in an idealized model
 - If all of N stations always have something to send, useful utilization of the Ethernet goes to 1/e as N gets large
Some Side Issues

- How does packet length affect efficiency?

- Why is there a minimum packet size?
 - How is it related to the maximum length of an Ethernet?
 - How is it related to the bandwidth?

- Modern Ethernets (100Mbps / 1Gbps / 10Gbps) look like this:

 ![Diagram of Hub or Switch]

 Why?

The Ethernet Frame / Addressing

- Preamble lets the receiver synch
- Addresses are 6-bytes
- Type field allows demultiplexing
 - Overloaded to be a length field in some modern variants
- Minimum payload is 46-bytes; max is 1500
 - Pad is necessary if the actual data < 46 bytes
- You know what CRC is..
Ethernet (802.2) Addresses

- Each interface on an Ethernet has a unique address
 - Interface cards examine each packet as it goes by
 - If the destination address matches their own address, they save the packet and notify the host
 - (Interfaces can also be put into "promiscuous mode," where they save all packets)

- Moreover, each interface in the world has a unique address

- Addresses are 48 bits, written as sixteen hex digits
 - First 24 bits (4 million possibilities) identify a manufacturer (e.g., 3Com)
 - Last 24 bits are assigned by the manufacturer, so that all cards are unique
 - FF:FF:FF:FF:FF:FF is reserved as the broadcast address

- (Can you imagine other ways to assign addresses? Why is the one used attractive?)

Wireless / 802.11

- There is a lot of activity in the 802.11 world...
- We'll consider here
 - 802.11b (up to 11Mbps), 802.11a (up to 54Mbps), 802.11g (up to 54Mbps) [802.11n (up to 300Mbps)]
 - Distributed Coordination Function (DCF) / infrastructure mode

- All packets to/from a host go through the AP
- AP is connected to a larger network (e.g., the Internet) and acts as a relay

Diagram:

```
  AP
 /\  
( ) C
 /   /
A   B
    /\  
     D
```
802.11 Wireless Networks

- Frequency division multiplexing is used statically
 - Each AP is on a channel (e.g., 802.11b has 13 channels)
- APs (typically) broadcast their service set ids (SSIDs)
- Clients select an AP and associate with it
 - Association has a medium term lifetime – many, many packets, typically
- Access to channels is through statistical multiplexing
- How should this work?

Characteristics of Wireless

- The ability of the radio to correctly decode a packet is determined by the signal-to-interference-and-noise-ratio (SINR):
 - \(\frac{\text{received signal strength}}{\text{interference + noise}} > \beta \)
- The received signal strength is the transmitted strength attenuated by the materials the signal passes through, and affected by multipath
- A useful but very inaccurate model is
 - \(\text{received strength} = \text{sent strength} \times d^{-\alpha} \)
 - \(\alpha=2 \) for free space
 - \(\alpha=3 \) to 4 for in-building
- Interference is the energy of other on-going transmissions
- Noise is the energy generated by the receiving radio and other nearby sources (e.g., the computer’s power supply)
Wireless Reliability

- Unlike Ethernet, packets can be lost even if only one station is transmitting
 - in fact, that’s common

- 802.11 uses explicit receiver ACKs

- Time is “reserved” by each (data) packet for the ACK that should be coming back
 - (data) packets contain a duration field in the header
 - The duration is the time it will take to send the current packet, plus a short idle time, plus the time to send back the ACK
 - All stations hearing the current packet are required to remain silent until the duration time has elapsed

A Picture

Data / dur = 300 usec.

transmit range
Basic MAC Protocol

• **Carrier-sense**
 – Defer if you sense a sufficiently high energy level in the air

• **No collision detection**
 – Transmission emanating from radio overwhelms any incoming signal

• **Explicit ACKs**
 – If no ACK received in reserved time
 – Use a binary exponential backoff procedure to chose a random backoff time
 – Count down that time, pausing whenever you sense a transmission in the air
 – Re-transmit when your counter reaches 0

Modified ARQ

• **To support this MAC level retry, the packet headers carry sequence numbers and a retry bit**
 – Retry bit = 0 for first transmission of a packet, 1 for retries
 – Sequence number of each distinct packet must be distinct (until wraparound)
 – Allows receiver to detect (and throw away) duplicates
 • Same sequence number as last packet received from that source and retry bit = 1 means it’s a duplicate
 • Otherwise, assume it’s a new packet and deliver up to other protocol layers

• **NO concept / detection of missing packets**
 – Sequence numbers are used only to detect duplicates
 – “Missing” sequence numbers have no meaning
 • Successive sequence numbers to a particular destination may be any number not used too recently.
ACK Reliability

- Both the original packet and the ACK must be received or re-transmissions will take place
- As we’ve seen, time is reserved for the ACK, to help increase the odds it is received
- Additionally, ACKs are transmitted at the lowest rates
 - Multiple transmission rates are supported
 - E.g., 802.11b has 1, 2, 5.5, and 11Mbps
 - Slower rates have a lower SINR ratio for correct decoding

The Hidden Terminal Problem

Reception area

Detection/deferral area
RTS / CTS

- A source may precede a data/ACK exchange with a request-to-send/clear-to-send (RTS/CTS) exchange

- The RTS carries a duration sufficient to cover the 4 packet exchange
 - With luck, it’s heard by all other stations within range of the source

- The receiver responds with a CTS carrying the time required to cover the CTS / data / ACK
 - With luck, it’s heard by all stations within range of the receiver

- If the CTS comes back, the source sends the data, in the normal way

- The specification does not dictate when to use RTS/CTS
 - It’s actually much less used than the book implies
 - Typically, there is a large, static packet size threshold, with RTS/CTS always used for packets larger than the threshold and never for those below

The Exposed Terminal Problem

![Diagram](image)
Addressing

• 802.2 (48-bit) addresses are used
 – They’re assigned just like with Ethernet – 24 bits name manufacturer, then 24 bits assigned by the manufacturer to that card

• Up to four addresses are contained in the header
 – Source: the address of where the packet originated
 – Transmitter: the address of the station actually transmitting
 • E.g., the AP might be forwarding a packet
 – Destination: address of the ultimate destination
 – Target: address of station that should take the packet off the air (e.g., the AP)

Frame Format

• Frames begin with a special bit pattern, sent at a low rate
• A zealous attempt has been made to keep frames as small as possible, leading to many frame types
• Here is a general idea of what they look like, though:

![Frame Format Diagram]
Other Considerations

• There is an *ad hoc* mode, allowing stations to talk directly to each other (without the concept of an AP)

• The spec defines a *contention free* infrastructure (AP) mode in which the AP basically polls the clients for data
 – *This has perhaps never been implemented in any commodity hardware*

• There is support for *power management*
 – Clients may turn off their radios for a while
 – When they come back on, there are packet exchanges defined for them to ask for any packets the AP may be buffering for delivery