
1

Silliness

Some Silliness

• Silly Receiver Windows
– Receiver’ s buffer is full.
– Reads one byte
– Advertises a one byte window
– Sender sends one byte
– Rinse, Lather, Repeat

• Receiver should not advertise a new window until
– It can handle a large packet (MSS), OR
– Recv buffer is half full

• Means delaying acks
– But don’ t delay indefinitely
– Spec say: “ must ack at least every 2*MSS bytes, and no later than 500ms after

segment receipt”

• Allows receiver to drain slowly without “bothering” the network or the sender.
• Thanks to Clark.

2

More Silliness
• Silly Sender Windows (“the small packet problem”)

– Sender sends 1 byte.
• (21 byte TCP ‘x’+20 byte IP)
• 4000% overhead!

• But it gets worse
– Sender sends 1 byte.
– Receiver acknowledges.
– Receiver reads 1 byte.
– Receiver advertises a new window.
– Rinse, Lather, Repeat

• Consider Telnet:
– KEY STROKE:

• CLIENT: TYPE ‘x’, (21 byte TCP ‘x’+20 byte IP)
• SERVER: (20 byte TCP ACK + 20 byte IP), READ x, (20 byte TCP Window Size+20 byte

IP), ECHO x

– KEY ECHO:
• SERVER: (21 byte TCP ‘x’ + 20 byte IP)
• CLIENT: READ x, PRINT x, get next keystroke.

– Piggyback ack of echoed character.

Nagling: Concatenate Send
Buffers

• When sender is has less than a full sized segment:
1. Send what’s available (eg, maybe just one byte)
2. Buffer until last sent byte acknowledged
3. On acknowledgement, send all buffered characters.
4. Go to 2.
Also, can send if have MSS bytes ready, or window half full.

• If network is slow, segments carry a lot of data (good
bandwidth).

• If network is fast, segments are acked quickly after they
are produced (good latency)

• Not always appropriate:
– Eg, erratic “mouse movements”

3

Nagle+Clark

• Goal: Sender shouldn’ t send small segments and
receiver should not ask for them.
– Receiver avoids advertising small TCP windows and

delays acks
– Sender delays transmission of partially filled segments

until all previously transmitted data has been accepted.

• Each is simple and makes a lot of sense
– Prevent the network from becoming congested with

small packets.

• What happens when you combine them?

Temporary Deadlock

• Nagle prevents sender from transmitting
more data until it receives an outstanding
ACK

• Delayed ACK keeps the receiver from
generating an ACK until it gets more data.

• Timeout breaks the deadlock
– But 200-500ms for an acknowledgement can

really hurt some transfers

4

Example of Interaction

Solutions?

• Consider these uses
for TCP:
– One-way bulk data

transfer
– Telnet
– General

request/response
(RPC)

• One request at a time

– Pipelined RPC
• Many requests at a

time
• Eg, Web Server

•Nagle + Delayed Ack
•No Nagle, No delayed NACK
•Nagle, but no delayed ack
•Delay ack, but don’t Nagle.
•Fix Nagle

5

Some Ways To Fix Nagle

• Delay send only if there is an
unacknowledged partial segment
– Prevents delay of a single short “ final” segment

• Adapt delayed ack
– If timeout needed, delay less.
– If timeout not needed, but used, delay more.

Enough Silliness

