CSE/EE 461 IP/ICMP and the Network Layer

Last Time

- Focus:
 - What to do when one shared LAN isn't big enough?
- Interconnecting LANs
 - Bridges and LAN switches
 - But there are limits ...

Application Presentation

Session

Transport

Network

Data Link

Physical

This Lecture

- Focus:
 - How do we build large networks?
- Introduction to the Network layer
 - Internetworks
 - Service models
 - IP, ICMP

Application
Presentation
Session
Transport
Network
Data Link
Physical

Internetworks

- Set of interconnected networks, e.g., the Internet
 - Scale and heterogeneity

The Network Layer

- Job is to provide end-to-end data delivery between hosts on an internetwork
- Provides a higher layer of addressing

Application
Presentation
Session
Transport
Network
Data Link
Physical

In terms of protocol stacks

- IP is the network layer protocol used in the Internet
- Routers are network level gateways
- Packet is the term for network layer PDUs

In terms of packet formats

- View of a packet on the wire on network 1 or 2
- Routers work with IP header, not higher
 - Higher would be a "layer violation"
- Routers strip and add link layer headers

Ethernet Header | IP Header | Higher layer headers and Payload |

The property of packet to left (and uppermost)

Network Service Models

- Datagram delivery: postal service
 - Also connectionless, best-effort or unreliable service
 - Network can't guarantee delivery of the packet
 - Each packet from a host is routed independently
 - Example: IP
- Virtual circuit models: telephone
 - Also connection-oriented service
 - Signaling: connection establishment, data transfer, teardown
 - All packets from a host are routed the same way (router state)
 - Example: ATM, Frame Relay, X.25

Datagrams or Virtual Circuits?

- Pros and Cons?
 - Simplicity/robustness versus stronger resource allocation
- We return to these tradeoffs later
 - Quality of Service (QOS)
 - These issues at the heart of current Internet evolution
 - Intserv (connection oriented) vs Diffserv ("connectionless")

Internet Protocol (IP)

- IP (RFC791) defines a "best effort" service
 - May be loss, reordering, duplication, and errors!
 - Currently IPv4 (IP version 4), IPv6 on the way
- Routers forward packets using predetermined routes
 - Routing protocols (RIP, OSPF, BGP) run between routers to maintain routes (routing table, forwarding information base)
- Global, hierarchical addresses, not flat addresses
 - 32 bits in IPv4 address; 128 bits in IPv6 address
 - ARP (Address Resolution Protocol) maps IP to MAC addresses

IPv4 Packet Format 19 31 • Version is 4 Version HLen TOS Length Identifier for Fragments Flags Fragment Offset • Header length is number of 32 bit TTL Checksum words Source Address Limits size of **Destination Address** options Pad (variable) Options (variable) Data

IPv4 Header Fields ... 19 Header checksum Version HLen TOS Length Identifier for Fragments Flags Fragment Offset Recalculated by routers (TTL TTL Checksum drops) Source Address **Destination Address** Doesn't cover data Pad (variable) Options (variable) Disappears for Data IPv6

Fragmentation and Reassembly

- · Each network has some MTU
- Strategy
 - fragment when necessary (MTU < Datagram)
 - try to avoid fragmentation at source host
 - refragmentation is possible
 - fragments are self-contained datagrams
 - use CS-PDU (not cells) for ATM
 - delay reassembly until destination host
 - do not recover from lost fragments
 - Example

Fragment Fields

- Fragments of one packet identified by (source, dest, frag id) triple
 - Make unique
- Offset gives start, length changed
- Flags are More Fragments (MF) Don't Fragment (DF)

Fragmenting a Packet

Packet Format

Fragment Considerations

- Relating fragments to original datagram provides:
 - Tolerance of loss, reordering and duplication
 - Ability to fragment fragments
- Reassembly done at the endpoint
 - Puts pressure on the receiver
- Consequences of fragmentation:
 - Loss of any fragments causes loss of entire packet
 - The packet train and buffer overflow
 - Need to time-out reassembly when any fragments lost

Fragmentation Issues Summary

- Causes inefficient use of resources within the network
 - BW, CPU
 - Eg, App sends 1024 bytes across ARPANET (1007 MTU)
 - 1024 + 40 for TCP/IP header
 - Frag 1 == 1000, Frag 2 == 84
 - Should have sent 1006 bytes!
- Higher level protocols must rexmit entire datagram
 - Really hard with "guaranteed packet loss"
- Efficient reassembly is hard
 - Lots of special cases
 - (think linked lists)

Avoiding Fragmentation

- Always send small datagrams
 - Might be too small
- "Guess" MTU of path
 - Use DF flag. May have large startup time
- Discover actual MTU of path
 - One RT delay w/help, much more w/o.
 - "Help" requires router support
- Guess or discover, but be willing to accept your mistakes

What is an Internet Address?

Global Addresses

- Properties
 - globally unique
 - hierarchical: network + host
- Small number of large networks
- 2. Modest # of medium sized networks
- 3. Many small networks

•	Format

		7			24		
(2)	0	Network		ork		Host	
					14		16
(b)	1	0	Network		В	ost	
					21		8
(c)	1	1	0		Networ)		Host

CLASS	SIZE	NUMBER
Α	2G	126
В		
С	254	2M

- Dot notation
 - -10.3.2.4
 - $-\ 128.96.33.81$
 - -192.12.69.77

Original Rationale: Beware the Routing Tables

- I. You don't care about most networks.
- 2. The few networks you do care about, you care about them a lot.
- 3. Not many routing table entries get you "closer" to a lot of the hosts

Datagram Forwarding

- Strategy
 - every datagram contains destination's address
 - if directly connected to destination network, then forward to host
 - if not directly connected to destination network, then forward to some router
 - forwarding table maps network number into next hop
 - each host has a default router
 - each router maintains a forwarding table
- Example (router R2)

Network Number	Next Hop
1	R3
2	R1
3	interface 1
4	interface 0

Address Translation

- Map IP addresses into physical addresses
 - destination host
 - next hop router
- Techniques
 - encode physical address in host part of IP address
 - table-based
- ARP
 - table of IP to physical address bindings
 - broadcast request if IP address not in table
 - target machine responds with its physical address
 - table entries are discarded if not refreshed

ARP Packets

- HardwareType: type of physical network (e.g., Ethernet)
- ProtocolType: type of higher layer protocol (e.g., IP)
- HLEN & PLEN: length of physical and protocol addresses
- Operation: request or response
- Source/Target Physical/Protocol addresses

Notes

- table entries timeout in about 10 minutes
- update table with source when you are the target
- update table table if already have an entry
- do not refresh table entries upon reference

ICMP

- What happens when things go wrong?
 - Need a way to test/debug a large, widely distributed system
- ICMP = Internet Control Message Protocol (RFC792)
 - Companion to IP required functionality
- Used for error and information reporting:
 - Errors that occur during IP forwarding
 - Queries about the status of the network

Common ICMP Messages

- Destination unreachable
 - "Destination" can be host, network, port or protocol
- Packet needs fragmenting but DF is set
- Redirect
 - To shortcut circuitous routing
- TTL Expired
 - Used by the "traceroute" program
- Echo request/reply
 - Used by the "ping" program
- Cannot Fragment
- Busted Checksum
- ICMP messages include portion of IP packet that triggered the error (if applicable) in their payload

ICMP Restrictions

- The generation of error messages is limited to avoid cascades ... error causes error that causes error!
- Don't generate ICMP error in response to:
 - An ICMP error
 - Broadcast/multicast messages (link or IP level)
 - IP header that is corrupt or has bogus source address
 - Fragments, except the first
- ICMP messages are often rate-limited too.

Key Concepts

- Network layer provides end-to-end data delivery across an internetwork, not just a LAN
 - Datagram and virtual circuit service models
 - IP/ICMP is the network layer protocol of the Internet
- Up next: More detailed look at routing and addressing