
1

CSE/EE 461
Connections

2

Last Time

• We began on the Transport layer

• Focus
– How do we send information reliably?

• Topics
– ARQ and sliding windows

• Silliness Physical
Data Link
Network

Transport

Session

Presentation
Application

2

3

This Time

• More on the Transport Layer

• Focus
– How do we connect processes?

• Topics
– Naming processes
– The Socket interface
– Connection setup / teardown
– TCP State Diagram

• http://www.faqs.org/rfcs/rfc793.html
Physical

Data Link
Network

Transport

Session

Presentation
Application

4

Naming Processes/Services

• Process here is an abstract term for your Web browser (HTTP),
Email servers (SMTP), hostname translation (DNS), RealAudio
player (RTSP), etc.

• How do we identify for remote communication?
– Process id or memory address are OS-specific and transient

• So TCP and UDP use Ports
– 16-bit integers representing mailboxes that processes “rent” from some

per-IP-endpoint broker
• Typically the OS

– Identify process uniquely as (IP address, protocol, port)
• OS converts into [process-specific communications channel]

– Such as a socket file descriptor or a message queue
– Totally OS dependent. Outside the protocol

3

5

Processes as Endpoints

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.Protocol
stuff

OS
stuff

port

Socket file descriptor

port

Socket file descriptor

read(), recvfrom(), recv()write(), sendto(), send()

6

TCP Delivery

Application process

Write
bytes

TCP

Send buffer

Segment Segment Segment

Transmit segments

Application process

Read
bytes

TCP

Receive buffer

…

… …

4

7

Picking Port Numbers

• We still have the problem of allocating port numbers
– What port should a Web server use on host X?
– To what port should you send to contact that Web server?

• Servers typically bind to “well-known” port numbers
– e.g., HTTP 80, SMTP 25, DNS 53, … look in /etc/services
– Ports below 1024 reserved for “well-known” services
– Originally considered ‘secure’ but that didn’t last long

• Clients use OS-assigned temporary (ephemeral) ports
– Above 1024, recycled by OS when client finished

• It’s all actually quite messy.

8

UNIX Sockets

The Ugly Truth

5

9

Berkeley Sockets

• Networking protocols are implemented as part of the
OS
– The networking API exported by most OS’s is the socket interface
– Originally provided by BSD 4.1c ~1982.

• The principal abstraction is a socket
– Point at which an application attaches to the network
– Defines operations for creating connections, attaching to

network, sending/receiving data, closing.

10

Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

0 4 10 16 31

TCP Header Format

• Ports plus IP addresses identify a connection

6

11

Connection-oriented example (TCP)
Server

Socket()

Bind()

Client

Socket()
Listen()

Accept()

Recv()

Send()

Connect()

Send()

Recv()

Block until
connect

Process
request

Connection Establishmt.

Data (request)

Data (reply)

12

SrcPort DstPort

Checksum Length

Data

0 16 31

User Datagram Protocol (UDP)

• Provides message delivery between processes
– Source port filled in by OS as message is sent
– Destination port identifies UDP delivery queue at endpoint

7

13

Connectionless example (UDP)
Server

Socket()

Bind()
Client

Socket()

Recvfrom()

Sendto()

Bind()

Sendto()

Recvfrom()

Block until
Data from
client

Process
request

Data (request)

Data (reply)

14

Socket call

• Means by which an application attached to the network
– #include <sys/socket.h>…

• int socket(int family, int type, int protocol)
• Family: address family (protocol family)

– AF_UNIX, AF_INET, AF_NS, AF_IMPLINK
• Type: semantics of communication

– SOCK_STREAM, SOCK_DGRAM, SOCK_RAW
– Not all combinations of family and type are valid

• Protocol: Usually set to 0 but can be set to specific value.
– Family and type usually imply the protocol

• Return value is a handle for new socket

8

15

Bind call

• Typically a server call
• Binds a newly created socket to the specified address

– int bind(int socket, struct sockaddr *address, int addr_len)

• Socket: newly created socket handle
• Address: data structure of address of local system

– IP address and port number (demux keys)
– Same operation for both connection-oriented and connectionless

servers
• Can use well known port or unique port

16

Listen call

• Used by connection-oriented servers to indicate an
application is willing to receive connections

• Int(int socket, int backlog)
• Socket: handle of newly creates socket
• Backlog: number of connection requests that can be

queued by the system while waiting for server to
execute accept call.

9

17

Accept call

• A server call
• After executing listen, the accept call carries out a

passive open (server prepared to accept connects).
• int accept(int socket, struct sockaddr *address, int addr_len)

• It blocks until a remote client carries out a connection
request.

• When it does return, it returns with a new socket that
corresponds with new connection and the address
contains the clients address

18

Connect call

• A client call
• Client executes an active open of a connection

– int connect(int socket, struct sockaddr *address, int addr_len)
– How does the OS know where the server is?

• Call does not return until the three-way handshake
(TCP) is complete

• Address field contains remote system’s address
• Client OS usually selects random, unused port

10

19

Input and Output

• After connection has been made, application uses
send/recv to data

• int send(int socket, char *message, int msg_len, int flags)
– Send specified message using specified socket

• int recv(int socket, char *buffer, int buf_len, int flags)
– Receive message from specified socket into specified buffer

• Or can use read/write
– int read(int socket, char* buffer, int len)
– int write(int socket, char* buffer, int len);

• Or can sometimes use sendto/recvfrom
• Or can use sendmsg, recvmsg for “scatter/gather”

Sample Code

11

21

Key Concepts

• We use ports to name processes in TCP/UDP
– “Well-known” ports are used for popular services

• OS Interface is how these things get programmed
– Other interfaces exist. Eg, Java, Perl

