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CSE/EE 461 
Connections
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Last Time

• We began on the Transport layer 

• Focus
– How do we send information reliably?

• Topics
– ARQ and sliding windows

• Silliness Physical
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This Time

• More on the Transport Layer 

• Focus
– How do we connect processes?

• Topics
– Naming processes
– The Socket interface
– Connection setup / teardown
– TCP State Diagram

• http://www.faqs.org/rfcs/rfc793.html
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Naming Processes/Services

• Process here is an abstract term for your Web browser (HTTP), 
Email servers (SMTP), hostname translation (DNS), RealAudio 
player (RTSP), etc.

• How do we identify for remote communication?
– Process id or memory address are OS-specific and transient 

• So TCP and UDP use Ports
– 16-bit integers representing mailboxes that processes “rent” from some 

per-IP-endpoint broker
• Typically the OS

– Identify process uniquely as (IP address, protocol, port)
• OS converts into [process-specific communications channel]

– Such as a socket file descriptor or a message queue
– Totally OS dependent. Outside the protocol
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Processes as Endpoints

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.Protocol 
stuff

OS
stuff

port

Socket file descriptor

port

Socket file descriptor

read(), recvfrom(), recv()write(), sendto(), send()
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TCP Delivery

Application process
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Picking Port Numbers

• We still have the problem of allocating port numbers
– What port should a Web server use on host X?
– To what port should you send to contact that Web server?

• Servers typically bind to “well-known” port numbers
– e.g., HTTP 80, SMTP 25, DNS 53, … look in /etc/services
– Ports below 1024 reserved for “well-known” services
– Originally considered ‘secure’ but that didn’t last long

• Clients use OS-assigned temporary (ephemeral) ports
– Above 1024, recycled by OS when client finished

• It’s all actually quite messy.
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UNIX Sockets

The Ugly Truth
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Berkeley Sockets

• Networking protocols are implemented as part of the 
OS
– The networking API exported by most OS’s is the socket interface
– Originally provided by BSD 4.1c ~1982.

• The principal abstraction is a socket
– Point at which an application attaches to the network
– Defines operations for creating connections, attaching to 

network, sending/receiving data, closing.
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Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

0 4 10 16 31

TCP Header Format

• Ports plus IP addresses identify a connection
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Connection-oriented example (TCP)
Server

Socket()

Bind()

Client

Socket()
Listen()

Accept()

Recv()

Send()

Connect()

Send()

Recv()

Block until
connect

Process
request

Connection Establishmt.

Data (request)

Data (reply)
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SrcPort DstPort

Checksum Length

Data

0 16 31

User Datagram Protocol (UDP)

• Provides message delivery between processes
– Source port filled in by OS as message is sent
– Destination port identifies UDP delivery queue at endpoint
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Connectionless example (UDP)
Server

Socket()

Bind()
Client

Socket()

Recvfrom()

Sendto()

Bind()

Sendto()

Recvfrom()

Block until
Data from 
client

Process
request

Data (request)

Data (reply)

14

Socket call

• Means by which an application attached to the network
– #include <sys/socket.h>…

• int socket(int family, int type, int protocol)
• Family: address family (protocol family)

– AF_UNIX, AF_INET, AF_NS, AF_IMPLINK
• Type:  semantics of communication

– SOCK_STREAM, SOCK_DGRAM, SOCK_RAW
– Not all combinations of family and type are valid

• Protocol:  Usually set to 0 but can be set to specific value.
– Family and type usually imply the protocol 

• Return value is a handle for new socket
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Bind call

• Typically a server call
• Binds a newly created socket to the specified address

– int bind(int socket, struct sockaddr *address, int addr_len)

• Socket:  newly created socket handle
• Address:  data structure of address of local system

– IP address and port number (demux keys)
– Same operation for both connection-oriented and connectionless 

servers
• Can use well known port or unique port
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Listen call

• Used by connection-oriented servers to indicate an 
application is willing to receive connections

• Int(int socket, int backlog)
• Socket:  handle of newly creates socket
• Backlog:  number of connection requests that can be 

queued by the system while waiting for server to 
execute accept call.
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Accept call

• A server call
• After executing listen, the accept call carries out a 

passive open (server prepared to accept connects).
• int accept(int socket, struct sockaddr *address, int addr_len)

• It blocks until a remote client carries out a connection 
request.

• When it does return, it returns with a new socket that 
corresponds with new connection and the address 
contains the clients address
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Connect call

• A client call
• Client executes an active open of a connection

– int connect(int socket, struct sockaddr *address, int addr_len)
– How does the OS know where the server is?

• Call does not return until the three-way handshake 
(TCP) is complete

• Address field contains remote system’s address
• Client OS usually selects random, unused port
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Input and Output

• After connection has been made, application uses 
send/recv to data

• int send(int socket, char *message, int msg_len, int flags)
– Send specified message using specified socket

• int recv(int socket, char *buffer, int buf_len, int flags)
– Receive message from specified socket into specified buffer

• Or can use read/write
– int read(int socket, char* buffer, int len)
– int write(int socket, char* buffer, int len);

• Or can sometimes use sendto/recvfrom
• Or can use sendmsg, recvmsg for “scatter/gather”

Sample Code
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Key Concepts

• We use ports to name processes in TCP/UDP
– “Well-known” ports are used for popular services

• OS Interface is how these things get programmed
– Other interfaces exist. Eg, Java, Perl


