CSE/EE 461
Connections

Last Time

* We began on the Transport layer

Application
e Focus Presentation
- How do we send information reliably? Session
[Transport |
¢ Topics Network
- ARQ and sliding windows Data Link
e Silliness Physical

This Time

¢ More on the Transport Layer

e Focus Application
- How do we connect processes? Presentation
Session
"R | Transport |
— Naming processes
— The Socket interface Network
— Connection setup / teardown Data Link
— TCP State Diagram Physical

® http://www.fags.org/rfcs/rfc793.html

Naming Processes/Services

® Process here is an abstract term for your Web browser (HTTP),
Email servers (SMTP), hostname translation (DNS), RealAudio
player (RTSP), etc.

* How do we identify for remote communication?
— Process id or memory address are OS-specific and transient

e So TCP and UDP use Ports

— 16-bit integers representing mailboxes that processes “rent” from some
per-IP-endpoint broker
¢ Typically the OS
— Identify process uniquely as (IP address, protocol, port)
¢ OS converts into [process-specific communications channel]
— Such as a socket file descriptor or a message queue
— Totally OS dependent. Outside the protocol

Processes as Endpoints

write(), sendto(), send() read(), recvfrom(), recv()
Output Input
T
Sockmt Laver =
OS Socket file descriptor Socket file descriptor

stuff @

s port | port
Protocol L Tranaport Layer T
stuff
N R L e \'J"I-I;i_"l'l"l-l
=] - =] oo [El] - =]
5
TCP Delivery
- |
1 write [J Read
: bytes : bytes
= =)
TCP TCP

i

Transmit segments
[Segment] [Segment]---[Segment]

Picking Port Numbers

We still have the problem of allocating port numbers
— What port should a Web server use on host X?
— To what port should you send to contact that Web server?

Servers typically bind to “well-known” port numbers
- e.g., HITP 80, SMTP 25, DNS 53, ... look in /etc/services
— Ports below 1024 reserved for “well-known” services
— Originally considered ‘secure’ but that didn’t last long

Clients use OS-assigned temporary (ephemeral) ports
— Above 1024, recycled by OS when client finished

It’s all actually quite messy.

UNIX Sockets

The Ugly Truth

Berkeley Sockets

* Networking protocols are implemented as part of the
oS
— The networking API exported by most OS’s is the socket interface
— Oiriginally provided by BSD 4.1c ~1982.
* The principal abstraction is a socket

— Point at which an application attaches to the network

— Defines operations for creating connections, attaching to
network, sending/receiving data, closing.

TCP Header Format

* Ports plus IP addresses identify a connection

0 4 10 16 31

SrcPort DstPort

SequenceNum

Acknowledgment

HdrLen 0 Flags AdvertisedWindow

Checksum UrgPtr

Options (variable)

Data

A\

10

Connection-oriented example (TCP)
Server

Accept()

Block until
connect

Recv
Process
reguest

11

User Datagram Protocol (UDP)

¢ Provides message delivery between processes
— Source port filled in by OS as message is sent
— Destination port identifies UDP delivery queue at endpoint

0 16 31

SrcPort DstPort

Checksum Length

Data

MN\/W\/\/\A\/\NW

12

Connectionless example (UDP)
Server

Client

Block until
Datafrom
client

Data (request)

Process
request

Sendto() Data (reply) i
Recvfrom()

13

Socket call

* Means by which an application attached to the network
— #include <sys/socket.h>...

* int socket(int family, int type, int protocol)

¢ Family: address family (protocol family)
— AF_UNIX, AF_INET, AF_NS, AF_IMPLINK

¢ Type: semantics of communication
- SOCK_STREAM, SOCK_DGRAM, SOCK_RAW
— Not all combinations of family and type are valid

® Protocol: Usually set to 0 but can be set to specific value.
— Family and type usually imply the protocol

e Return value is a handle for new socket

14

Bind call

Typically a server call

Binds a newly created socket to the specified address
— int bind(int socket, struct sockaddr *address, int addr_len)

Socket: newly created socket handle

Address: data structure of address of local system
— IP address and port number (demux keys)

— Same operation for both connection-oriented and connectionless
servers

¢ Can use well known port or unique port

15

Listen call

¢ Used by connection-oriented servers to indicate an
application is willing to receive connections

* Int(int socket, int backlog)
* Socket: handle of newly creates socket

* Backlog: number of connection requests that can be
queued by the system while waiting for server to
execute accept call.

16

Accept call

e A server call

» After executing listen, the accept call carries out a
passive open (server prepared to accept connects).

* int accept(int socket, struct sockaddr *address, int addr_len)

e It blocks until a remote client carries out a connection
request.

e When it does return, it returns with a new socket that
corresponds with new connection and the address
contains the clients address

17

Connect call

A client call

Client executes an active open of a connection
— int connect(int socket, struct sockaddr *address, int addr_len)

— How does the OS know where the server is?

Call does not return until the three-way handshake
(TCP) is complete

Address field contains remote system’s address

Client OS usually selects random, unused port

18

Input and Output

* After connection has been made, application uses
send/recv to data
* int send(int socket, char *message, int msg_len, int flags)
- Send specified message using specified socket
* int recv(int socket, char *buffer, int buf_len, int flags)
— Receive message from specified socket into specified buffer
® Or can use read /write
— int read(int socket, char* buffer, int len)
— int write(int socket, char* buffer, int len);
* Or can sometimes use sendto/recvfrom
* Or can use sendmsg, recvmsg for “scatter/gather”

19

Sample Code

10

Key Concepts

e We use ports to name processes in TCP/UDP
- “Well-known” ports are used for popular services

* OS Interface is how these things get programmed
— Other interfaces exist. Eg, Java, Perl

21

11

