
Fishnet Assignment 2: Routing

Due: Wednesday, February 2 at the beginning of class

CSE/EE 461: Winter 2005

Your assignment is to extend your Fishnet node to support routing, so that messages

are sent only to nodes enroute to the destinations rather than being flooded throughout the

network.

1 Link State Routing

Your node must implement link-state routing and use these routes to forward packets. You

should read about link-state routing in Peterson 4.2.3. Note that we are not implementing

OSPF, but a different and simpler link-state protocol. A link-state protocol generally involves

four steps:

1. Neighbor discovery. To determine your current set of neighbors.

2. Link-state flooding. To tell all nodes about all neighbors.

3. Shortest-path calculation using Dijkstra’s algorithm. To determine the next-hops for

routes.

4. Forwarding. To send packets using the next-hops.

Here are your constraints:

• You should use the LinkState class to format link-state information. A LinkState object

contains a list of neighbors for a given node. Note that the link state information is

the ”payload ” (packet contents) of a packet with a normal packet header. The pack

method of the LinkState class should be used to turn the LinkState object into a byte

array before putting it into a packet that uses the Protocol.LINK INFO PKT protocol.

• You should use your solution from assignment 1 to flood the link state information

throughout the network, so that all nodes know which nodes are neighbors of which

other nodes. A key design choice is when to send out a LinkState packet periodically?

Immediately after the neighbor list changes? A key design criterion is to distribute

link state information using as few packets as possible, while keeping nodes as up to

date as possible.

1



• To run Dijkstra’s algorithm, see the details in Peterson. Note that you should not use

a link in your routes unless both ends of the link agree that it is available (that they

are neighbors). The result of this algorithm should be a routing table containing the

next-hop neighbor to send to for each destination address.

• You should forward packets using the next-hop neighbors in the above routing table.

The exception is packets sent to the network broadcast address (e.g., for neighbor

discovery or sending link state information); these should be flooded.

• Add two commands to your node: ”dump linkstate” to dump all of the link state

advertisements you used to compute the routing table, and ”dump table” to dump

the contents of the routing table. You may find this more convenient than logging the

entire routing table after every change.

• In a separate packet, but transmitted in the same way as the link state packet, you

should transmit a short text name to more easily identify your node. The protocol

should be Protocol.NAME PKT. The packet contents should be the name of source

node. For example, this allows you to associate the node address 16 with the hostname

”brian-node” . You should also keep track of the names advertised by other nodes.

• You will probably want to modify your ping command so that it can take a hostname

to ping instead of an address. Also, you will probably want to add a new ”ls” command

that lists the nodes in the network. To see that your protocol is working, you might

use the simulator or trawler to set up a small network and see that your ”ls” command

at one node tracks the fishnet membership as you stop and start nodes.

Once you have completed all of the above, you should be able to ping any other node

(by name!) in the network, and have a packet travel to that node and back without being

unnecessarily flooded throughout the network. To see that your protocol is working, you

might set up a small ring network, use ping to test whether you can reach remote nodes,

and then break reachability by stopping a node on the path so that ping no longer receives

a response. Your routing protocol should detect this and repair the situation by finding

an alternative path. When it does, ping will work again. This is the turn-in exercise.

Congratulations! You have a real, working network!

2



2 Efficient Routing (optional for extra credit)

Note that grades for the course are established without considering extra credit. We then

add any extra credit points. Doing EC is entirely optional, and not doing them will in no

way harm your grade, even if everyone else in the class does the EC problems. We offer EC

problems as a way of providing challenges for those students with both the time and interest

to pursue certain issues in more depth.

Link state routing is a ”mechanism” for controlling routes; it does not specify the ”pol-

icy” used for selecting which routes to use and which ones to avoid. Clearly, the end user

performance can vary dramatically based on the route selection. For example, what if certain

wireless hops were very lossy? Shortest path routing might choose those routes, even though

the end user might be happier with another path through more reliable links.

Part 2 is to design and implement a routing algorithm that chooses better routes than

the default selected by link state shortest path. Better is of course in the eyes of the beholder

- lower loss rates, lower latency, higher bandwidth are all reasonable choices. Note that your

design can and should make use of the facilities defined above (link state advertisements),

but it need not interoperate with the code from other student projects (e.g., you can define

extra protocol messages or carefully modify existing ones as needed). As a first step, for

example, you’ll probably want to implement something that measures the properties of a

hop or a path, so that you can use that information in setting link weights for the shortest

path computation or in choosing source routes for virtual circuits.

Be sure to add to your turn in: a short description of your design and a simple illustrative

test case.

3 Discussion Questions

1. Why do we use a link for the shortest path computation only if it exists in our database

in both directions? What would happen if we used a directed link AB when the link

BA does not exist?

2. Does your routing algorithm produce symmetric routes (that follow the same path

from X to Y in reverse when going from Y to X)? Why or why not?

3. What would happen if a node advertised itself as having neighbors, but never forwarded

3



packets? How might you modify your implementation to deal with this case?

4. What happens if link state packets are lost or corrupted?

5. What would happen if a node alternated between advertising and withdrawing a neigh-

bor, every few milliseconds? How might you modify your implementation to deal with

this case?

Write only a few short sentences for each of these questions!

4 Turn-In

For this and future assignments, you need to demonstrate that your node works in the class

network as well as turn in both electronic and paper material as follows.

For the due date, Wednesday, February 2:

1. Run a four node fishnet simulation or emulation. Make the nodes form a ring network.

From one node, ping the other node that is not directly connected, observing which

way it travels around the ring. Stop the intermediate node the messages passedrough.

Repeat the ping when routing has repaired paths and itavels along an alternate path.

Capture the entire output using, for example, the script command. Make sure that we

can see whatckets are being sent and received during the exchange ofnkState messages

and as the ping goes across the network. Mark the printout to tell us what is going

on.

2. Make your node join our Trawler to be able to talk to our node (details on where

the Trawler is running will be emailed out later). Make sure your node is exchanging

neighbor and routing packets with our node. What is the name of our node?

3. Use the turnin program on the Linux servers to electronically submit one or more java

files containing the entire contents of the proj directory in other words, all the files

containing the source code for your solution. You must do this before class on the day

that it is due. The code you send us should run correctly if we invoke lib/Fishnet in

the class distribution.

4. In class on the due date, hand in one stapled hard copy write up, with both partners’

names on it, containing:

4



• A printout of the source code you submitted electronically.

• A brief write-up (probably less than a page) of your design decisions.

• A printout of any output we have asked you to capture.

• Short answers o the discussion questions.

Have Fun!

5


