CSE/EE 461 – Lecture 19

Naming and the DNS

Last Time

• HTTP and the Web
 • Focus
 – Protocol, performance implications
 • Topics
 – HTTP request and response structure
 – Persistent HTTP
 – Caching

This Lecture

• Naming
 • Focus
 – How do we name hosts etc.?
 • Topics
 – Domain Name System (DNS)
 – Email/URLs
Names and Addresses

- Names are identifiers for objects/services (high level)
- Addresses are locators for objects/services (low level)
- Binding is the process of associating a name with an address
- Resolution is the process of looking up an address given a name
- But, addresses are really lower-level names; many levels used

Naming in Systems

- Ubiquitous
 - Files in filesystem, processes in OS, pages on the web, ...
- Decouple identifier for object/service from location
 - Hostnames provide a level of indirection for IP addresses
- Naming greatly impacts system capabilities and performance
 - Ethernet addresses are a flat 48 bits
 - IP addresses are hierarchical 32/128 bits
 - flat ➔ any address anywhere but large forwarding tables
 - hierarchy ➔ smaller routing tables but constrained locations

Internet Hostnames

- Hostnames are human-readable identifiers for end-systems based on an administrative hierarchy
 - futureproof.cs.washington.edu is my desktop machine
- IP addresses are a fixed-length binary encoding for end-systems based on their position in the network
 - 128.95.2.112 is futureproof’s IP address
- Original name resolution: HOSTS.TXT
- Current name resolution: Domain Name System
- Future name resolution: ?
Original Hostname System

- When the Internet was really young...
- Flat namespace
 - Simple (host, address) pairs
- Centralized management
 - Updates via a single master file called HOSTS.TXT
 - Manually coordinated by the Network Information Center (NIC)
- Resolution process
 - Look up hostname in the HOSTS.TXT file

Scaling Problems

- Coordination
 - Between all users to avoid conflicts
- Inconsistencies
 - Between update and distribution of new version
- Reliability
 - Single point of failure
- Performance
 - Competition for centralized resources

Domain Name System (DNS)

- Designed by Mockapetris and Dunlap in the mid 80s
- Namespace is hierarchical
 - Allows much better scaling of data structures
 - e.g., futureproof.cs.washington.edu
- Namespace is distributed
 - Decentralized administration and access
 - e.g., *.cs.washington.edu managed by CSE
- Resolution is by query/response
 - With replicated servers for redundancy
 - With heavy use of caching for performance
DNS Hierarchy

- "dot" is the root of the hierarchy
- Top levels now controlled by ICANN
- Lower level control is delegated
- Usage governed by conventions
- FQDN = Fully Qualified Domain Name

DNS Distribution

- Data managed by zones that contain resource records
 - Zone is a complete description of a portion of the namespace
 - e.g., all hosts and addresses for machines in washington.edu with pointers to subdomains like cs.washington.edu
- One or more nameservers manage each zone
 - Zone transfers performed between nameservers for consistency
 - Multiple nameservers provide redundancy
- Client resolvers query nameservers for specified records
 - Multiple messages may be exchanged per DNS lookup to navigate the name hierarchy (coming soon)

DNS Lookups/Resolution

- DNS queries/responses carried on UDP port 53
 - Root name server
 - Local name server
 - Princeton name server
 - CS name server
Hierarchy of Nameservers

Caching
- Servers and clients cache results of DNS lookups
 - Cache partial results too (e.g., server for princeton.edu)
 - Greatly improves system performance; lookups the rare case
- Cache using time-to-live (TTL) value from provider
 - higher TTL means less traffic, lower TTL means less stale info
- Negative caching is used too!
 - errors can cause repeated queries for non-existent data

DNS Bootstrapping
- Need to know IP addresses of root servers before we can make any queries
- Addresses for 13 root servers ([a-m].root-servers.net) handled via initial configuration (named.ca file)
Building on the DNS

- Other naming designs leverage the DNS

- Email:
 - e.g., gribble@cs.washington.edu is gribble in the domain cs.washington.edu

- Uniform Resource Locators (URLs) name for Web pages
 - e.g., www.cs.washington.edu/homes/gribble
 - Use domain name to identify a Web server
 - Use “/” separated string to name path to page (like files)

Future Evolution of the DNS

- Design constrains us in two major ways that are increasingly less appropriate

 - Static host to IP mapping
 - What about mobility (Mobile IP) and dynamic address assignment (DHCP)
 - Location-insensitive queries
 - What if I don’t care what server a Web page comes from, as long as it’s the right page?
 - e.g., a yahoo page might be replicated

Akamai

- Use the DNS to effect selection of a nearby Web cache

- Leverage separation of static/dynamic content
- Beware DNS caching
Key Concepts

- The design of names, addresses and resolution has a significant impact on system capabilities

- Hierarchy, decentralization and caching allow the DNS to scale
 - These are general techniques!