
1

CSE/EE 461 – Lecture 14

Connections

sdg // CSE/EE 461, Fall 2005 L14.2

Last Time

• We began on the Transport layer

• Focus
– How do we send information reliably?

• Topics
– ARQ and sliding windows

Physical
Data Link
Network

Transport
Session

Presentation
Application

sdg // CSE/EE 461, Fall 2005 L14.3

This Time

• More on the Transport Layer

• Focus
– How do we connect processes?

• Topics
– Naming processes
– Connection setup / teardown
– Flow control

Physical
Data Link
Network

Transport
Session

Presentation
Application

2

sdg // CSE/EE 461, Fall 2005 L14.4

Naming Processes/Services

• Process here is an abstract term for your Web browser (HTTP),
Email servers (SMTP), hostname translation (DNS), RealAudio
player (RTSP), etc.

• How do we identify for remote communication?
– Process id or memory address are OS-specific and transient

• So TCP and UDP use Ports
– 16-bit integers representing mailboxes that processes “rent”

• typically from OS
– Identify process uniquely as (IP address, protocol, port)

• OS converts into process-specific channel, like “socket”

sdg // CSE/EE 461, Fall 2005 L14.5

Processes as Endpoints

Protocol
stuff

OS
stuff

port

Socket file descriptor

port

Socket file descriptor

read(), recvfrom(), recv()write(), sendto(), send()
app
stuff

sdg // CSE/EE 461, Fall 2005 L14.6

Picking Port Numbers

• We still have the problem of allocating port numbers
– What port should a Web server use on host X?
– To what port should you send to contact that Web server?

• Servers typically bind to “well-known” port numbers
– e.g., HTTP 80, SMTP 25, DNS 53, … look in /etc/services
– Ports below 1024 reserved for “well-known” services

• Clients use OS-assigned temporary (ephemeral) ports
– Above 1024, recycled by OS when client finished

3

sdg // CSE/EE 461, Fall 2005 L14.7

SrcPort DstPort

Checksum Length

Data

0 16 31

User Datagram Protocol (UDP)

• Provides message delivery between processes
– Source port filled in by OS as message is sent
– Destination port identifies UDP delivery queue at endpoint

sdg // CSE/EE 461, Fall 2005 L14.8

Application
process

Application
process

Application
process

Packets arrive

Ports

Message
Queues

DeMux on
Port #

UDP Delivery

Kernel
boundary

sdg // CSE/EE 461, Fall 2005 L14.9

UDP Checksum

• UDP includes optional protection against errors
– Checksum intended as an end-to-end check on delivery
– So it covers data, UDP header, and IP pseudoheader

SrcPort DstPort

Checksum Length

Data

0 16 31

4

sdg // CSE/EE 461, Fall 2005 L14.10

Transmission Control Protocol (TCP)

• Reliable bi-directional bytestream between processes
– Message boundaries are not preserved

• Connections
– Conversation between endpoints with beginning and end

• Flow control
– Prevents sender from over-running receiver buffers

• Congestion control
– Prevents sender from over-running network buffers

sdg // CSE/EE 461, Fall 2005 L14.11

TCP Delivery

Application process

Write
bytes

TCP
Send buffer

Segment Segment Segment
Transmit segments

Application process

Read
bytes

TCP
Receive buffer

…

… …

sdg // CSE/EE 461, Fall 2005 L14.12

Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

0 4 10 16 31

TCP Header Format

• Ports plus IP addresses identify a connection

5

sdg // CSE/EE 461, Fall 2005 L14.13

Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

0 4 10 16 31

TCP Header Format

• Sequence, Ack numbers used for the sliding window

sdg // CSE/EE 461, Fall 2005 L14.14

Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

0 4 10 16 31

TCP Header Format

• Flags may be URG, ACK, PSH, RST, SYN, FIN

sdg // CSE/EE 461, Fall 2005 L14.15

Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

0 4 10 16 31

TCP Header Format

• Advertised window is used for flow control

6

sdg // CSE/EE 461, Fall 2005 L14.16

Other TCP Header Fields

• Header length allows for variable length TCP header
– options for extensions such as timestamps, selective

acknowledgements, etc.

• Checksum is analogous to that of UDP
• Urgent pointer/data not used in practice

sdg // CSE/EE 461, Fall 2005 L14.17

TCP Connection Establishment

• Both sender and receiver must be ready before we start
to transfer the data
– Sender and receiver need to agree on a set of parameters
– e.g., the Maximum Segment Size (MSS)

• This is “signaling”
– It sets up state at the endpoints
– Compare to “dialing” in the telephone network

• In TCP a Three-Way Handshake is used

sdg // CSE/EE 461, Fall 2005 L14.18

Three-Way Handshake

• Opens both directions for transfer

Active opener
(client)

Passive listener
(server)

SYN, SequenceNum = x

SYN + ACK, SequenceNum = y,

ACK, Acknowledgment = y + 1

Acknowledgment = x + 1

+data

7

sdg // CSE/EE 461, Fall 2005 L14.19

Some Comments

• We could abbreviate this setup, but it was chosen to be
robust, especially against delayed duplicates
– Three-way handshake from Tomlinson 1975

• Choice of changing initial sequence numbers (ISNs)
minimizes the chance of hosts that crash getting
confused by a previous incarnation of a connection

• But with random ISN it actually proves that two hosts
can communicate
– Weak form of authentication

sdg // CSE/EE 461, Fall 2005 L14.20

CLOSED

LISTEN

SYN_RCVD SYN_SENT

ESTABLISHED

CLOSE_WAIT

LAST_ACKCLOSING

TIME_WAIT

FIN_WAIT_2

FIN_WAIT_1

Passive open Close

Send/ SYN
SYN/SYN + ACK

SYN + ACK/ACK

SYN/SYN + ACK

ACK

Close /FIN

FIN/ACKClose /FIN

FIN/ACKACK + FIN/ACK Timeout after two
segment lifetimesFIN/ACK

ACK

ACK

ACK

Close /FIN

Close

CLOSED

Active open/SYN

TCP State Transitions

sdg // CSE/EE 461, Fall 2005 L14.21

Again, with States

Active participant
(client)

Passive participant
(server)

SYN, SequenceNum = x

SYN + ACK, SequenceNum = y,

ACK, Acknowledgment = y + 1

Acknowledgment = x + 1

+data

LISTEN

SYN_RCVD

SYN_SENT

ESTABLISHED

ESTABLISHED

8

sdg // CSE/EE 461, Fall 2005 L14.22

Connection Teardown

• Orderly release by sender and receiver when done
– Delivers all pending data and “hangs up”

• Cleans up state in sender and receiver

• TCP provides a “symmetric” close
– both sides shutdown independently

sdg // CSE/EE 461, Fall 2005 L14.23

TCP Connection Teardown

Web server Web browser

FIN

ACK

ACK

FIN

FIN_WAIT_1

CLOSE_WAIT

LAST_ACK
FIN_WAIT_2
TIME_WAIT

CLOSEDCLOSED
…

sdg // CSE/EE 461, Fall 2005 L14.24

The TIME_WAIT State

• We wait 2MSL (two times the maximum segment
lifetime of 60 seconds) before completing the close

• Why?

• ACK might have been lost and so FIN will be resent
• Could interfere with a subsequent connection

9

sdg // CSE/EE 461, Fall 2005 L14.25

Berkeley Sockets interface

• Networking protocols implemented in OS
– OS must expose a programming API to applications
– most OSs use the “socket” interface
– originally provided by BSD 4.1c in ~1982.

• Principle abstraction is a “socket”
– a point at which an application attaches to the network
– defines operations for creating connections, attaching to

network, sending and receiving data, closing connections

sdg // CSE/EE 461, Fall 2005 L14.26

TCP (connection-oriented)
Server

Socket()

Bind()
Client

Socket()
Listen()

Accept()

Recv()

Send()

Connect()

Send()

Recv()

Block until
connect

Process
request

Connection Establishmt.

Data (request)

Data (reply)

sdg // CSE/EE 461, Fall 2005 L14.27

UDP (connectionless)

Server

Socket()

Bind()
Client

Socket()
Recvfrom()

Sendto()

Bind()

Sendto()

Recvfrom()

Block until
Data from
client

Process
request

Data (request)

Data (reply)

10

sdg // CSE/EE 461, Fall 2005 L14.28

Socket call

• Means by which an application attached to the network
– #include <sys/socket.h>…

• int socket(int family, int type, int protocol)
• Family: address family (protocol family)

– AF_UNIX, AF_INET, AF_NS, AF_IMPLINK

• Type: semantics of communication
– SOCK_STREAM, SOCK_DGRAM, SOCK_RAW
– Not all combinations of family and type are valid

• Protocol: Usually set to 0 but can be set to specific value.
– Family and type usually imply the protocol

• Return value is a handle for new socket

sdg // CSE/EE 461, Fall 2005 L14.29

Bind call

• Typically a server call
• Binds a newly created socket to the specified address

– int bind(int socket, struct sockaddr *address, int addr_len)

• Socket: newly created socket handle
• Address: data structure of address of local system

– IP address and port number (demux keys)
– Same operation for both connection-oriented and connectionless

servers
• Can use well known port or unique port

sdg // CSE/EE 461, Fall 2005 L14.30

Listen call

• Used by connection-oriented servers to indicate an
application is willing to receive connections

• Int(int socket, int backlog)
• Socket: handle of newly creates socket
• Backlog: number of connection requests that can be

queued by the system while waiting for server to
execute accept call.

11

sdg // CSE/EE 461, Fall 2005 L14.31

Accept call

• A server call
• After executing listen, the accept call carries out a

passive open (server prepared to accept connects).
• int accept(int socket, struct sockaddr *address, int addr_len)

• It blocks until a remote client carries out a connection
request.

• When it does return, it returns with a new socket that
corresponds with new connection and the address
contains the clients address

sdg // CSE/EE 461, Fall 2005 L14.32

Connect call

• A client call
• Client executes an active open of a connection

– int connect(int socket, struct sockaddr *address, int addr_len)
– How does the OS know where the server is?

• Call does not return until the three-way handshake
(TCP) is complete

• Address field contains remote system’s address
• Client OS usually selects random, unused port

sdg // CSE/EE 461, Fall 2005 L14.33

Input and Output

• After connection has been made, application uses send/recv to data
• int send(int socket, char *message, int msg_len, int flags)

– Send specified message using specified socket

• int recv(int socket, char *buffer, int buf_len, int flags)
– Receive message from specified socket into specified buffer

• Or can use read/write
– int read(int socket, char* buffer, int len)
– int write(int socket, char* buffer, int len);

• Or can sometimes use sendto/recvfrom
• Or can use sendmsg, recvmsg for “scatter/gather”

12

Sample Code

sdg // CSE/EE 461, Fall 2005 L14.35

Key Concepts

• We use ports to name processes in TCP/UDP
– “Well-known” ports are used for popular services

• Connection setup and teardown complicated by the
effects of the network on messages
– TCP uses a three-way handshake to set up a connection
– TCP uses a symmetric disconnect

