Announcements

- Anonymous feedback form on website
- Won’t get to mobility
 - Read 4.2.5 if you are interested
 - Come to office hours if you have questions
- Homework 1 due next time
 - Questions?

Most important ideas from last time

- Clarification of spanning trees
- Soft state
- Why use routing instead of spanning trees
- Routing - “Routing is cool”
 - Using shortest paths
 - Routing vs. forwarding
- Distance vector routing
 - Counting-to-infinity problem

Questions from last time

- Today we’ll address:
 - Split horizon & poison reverse unclear
 - Do people use distance vector?
 - If path vector isn’t used to avoid counting to infinity, what is?
 - How to determine link costs?
- Later we’ll address:
 - Routing at a global scale
Count To Infinity Problem

A 2 B 1

The Internet

Approaches to routing

- Distance vector:
 - Distribute information about all nodes to my neighbors

- Link state:
 - Distribute information about my neighbors to all nodes

Link State Routing

- Idea:
 Each router learns the complete network topology and computes its own best paths

- Two phases:
 1.
 2.

Why link state routing?

- In DV, routers hide their computation, making it difficult to decide what to do when there are changes
 - e.g.,

- With LS, faster convergence and hopefully better stability
- But it is more complex...
Link State Assumptions

- Each router knows
 - Who neighbors are
 - Cost to each neighbor
 - Whether each link is up or down

LSP Flooding

- Each router periodically floods a link state packet (LSP)
- LSP contains
 - Cost
 - Whether each link is up or down
- Each router maintains a database of most recent LSPs

Shortest Paths: Dijkstra’s Algorithm

- Graph algorithm for single-source shortest path

\[
S \leftarrow \emptyset \\
Q \leftarrow \text{<all nodes keyed by distance>} \\
\text{While } Q \neq \emptyset \\
\quad u \leftarrow \text{extract-min}(Q) \\
\quad S \leftarrow S \cup \{u\} \\
\quad \text{for each node } v \text{ adjacent to } u \\
\quad \text{“relax” the cost of } v
\]

Relaxation step

If \(\text{cost}(u) + \text{cost}(u,v) < \text{cost}(v) \)

update cost(v)
Dijkstra Example – Your answer

Dijkstra Example – Class answer

What if LSPs get lost?

• What could happen?

• What can we do?

What if a link or router fails?

• Need to remove old data. How?

• What if it fails repeatedly?
What happens when a router fails and restarts?

- What sequence number should it use? Don’t want data ignored.

Cost Metrics

- How should we choose cost?
 - To get high bandwidth, low delay, or low loss?
 - Does cost depend on the load?

Static vs. Dynamic Metrics

- Static Metrics
 - Hopcount is easy but treats OC3 (155 Mbps) same as T1 (1.5 Mbps)
 - Can tweak result with manually assigned costs

- Dynamic Metrics
 - Depend on load; try to avoid hotspots (congestion)
 - But can lead to oscillations

Revised ARPANET Cost Metric
Alternatives to routing

- Goal: Avoid packet reordering

- Source routing:

- Virtual circuits:

Establishing a virtual circuit

- Send circuit setup request

- Each node records state for next hop in path for this VC

- What if request is dropped along path?

Hard state vs. Soft state

- Hard state:

- Soft state:

What if a link fails?

- With hard state:

- With soft state:
Network Service Models

<table>
<thead>
<tr>
<th>Model</th>
<th>Datagram</th>
<th>Virtual circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metaphor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other terms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Packet forwarding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router state</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Datagrams or Virtual Circuits?

- **Pros and Cons?**
 - Simplicity/robustness versus stronger resource allocation
- **We return to these tradeoffs later**
 - Quality of Service (QOS)
 - At the heart of current Internet evolution
 - Intserv (connection oriented)
 vs Diffserv ("connectionless")

Key Concepts

- How can we get packets across the network efficiently in the face of node and link failures?
 - Learning bridges & spanning trees
 - Distance vector routing
 - Link state routing
 - Virtual circuits
 - Soft state and learning

Next time...

- Where in a system should we place functionality?
- Saltzer et al., “End-to-End Arguments in System Design”