
1

�����������
	
������
������

Part 2

2

��������
����������������

• Public and private key related mathematically
– Public key can be published; private is a secret
– Very Hard to deduce private key from public key

Plaintext M

Encrypt with
public key

Ciphertext

Plaintext M

Decrypt with
private key

E(M, K)

D(E(M, K),K’)

E(M, K)

2

3

����
���� ���������!�"�� ��
��"� ���

• Notice that we reversed the role of the keys (and the
math just works out) so only one party can send the
message but anyone can check it’s authenticity

Plaintext

Encrypt with
PRIVATE key

Ciphertext

Plaintext

Decrypt with
PUBLIC key

4

����# $%�
�������&������� �
'
�� ���$

• Bob receives the message
“HELLO” encrypted with
Alice’s private key

• Bob decrypts the msg using
Alice’s public key and sees the
word “HELLO”

• Bob concludes that Alice sent
the message to Bob.

The protocol defines:
The messages that go back

and forth.
The way the messages are

manipulated.
The conclusions that can be

drawn from the dialog.
Three ways to attack a protocol:
1. Break the key.
2. Lead one or both parties to the

wrong conclusions.
3. Infect the implementation to

thwart, spoof, or circumvent.

Bob has drawn the wrong conclusion.

3

5

����"���()(�(*��+�,�
����"��*-(�.)/'�

• Algorithms let you encode the bits
• Protocols tell you how to decide if the bits are valid
• Looks pretty easy
• But in practice, it’s pretty hard

– The Protocols Must Be Correctly Implemented
• They Achieve What They are Intended to Achieve
• They Can Not Be Bypassed

• Most failures come from NOT from attacks on the the algorithm
BUT
– Attacks on the protocol
– Attacks on the (protocol) implementation
– Attacks on some other aspects of the target implementation thereby

circumventing the protocol itself
• Can happen when a system is strongly, but not broadly secured.

• In other words, why work hard to break DES when it’s so easy to
break IE.

6

)0 �1���
���������������
�
2
 �
���*���

4

7

8

5

!� ���"���
����"����������

For how to break keys, take a crypto class.

For how to infect a target, take an OS class
and read the literature

3�0
��� �0��"� ������� �0�
��
������������� �����*
 0��)

• What does this protocol achieve?
• Does this protocol need more assumptions than another

one?
• Does this protocol do anything unnecessary that could

be left out without weakening it?
• Does this protocol encrypt something that could be sent

in the clear?

6

11

����
���� �����������

• Three-way handshake for mutual authentication
– Client and server share secrets, e.g., login password

Client Server

ClientId, E(x, CHK)

E(y + 1, CHK)

E(SK, SHK)

E(x + 1, SHK), E(y, SHK)

Client authenticates
server here

Server authenticates
client here

Session key
exchanged

SHK=CHK

Weaknesses?

����
���$%�
������

• Needham-Schroeder Protocol -- 1978
– Forms the basis of Kerberos & MS Auth Protocols

Key Server

Alice Bob

1:A,B,Na

2:{ Na,B,Kab,{ Kab,A} Kbs} Kas

3:{ Kab,A} Kbs
4:{ Nb} Kab

5:{ Nb-1} Kab

What’s the weakness in the protocol?

7

��$%�
�����$%������ �
*
 0���2
 ��
��
�

• Bob assumes that the key it is being given by Alice is
fresh.

• With this assumption, Bob believes that Alice is in fact
Alice, and will provide Alice with whatever Alice wants.

• No protection against replay
• This doesn’t mean the protocol is broken, only that it

makes certain assumptions.

���
%� ����� ��

Key Server

Alice Bob

1:A,B,Na

2:{ Na,B,Kab,{ Kab,A} Kbs} Kas

3:{ Kab,A} Kbs
4:{ Nb} Kab

5:{ Nb-1} Kab

Sniffing Sam

3:{ Kab,A} Kbs
… several days later...

Bob
4:{ Nb} Kab

5:{ Nb-1} Kab

8

2���0�0������ �
 ��
������%���4

• Eyeball verification is not very effective
• Assumptions are often not explicit

– eg, the key is fresh

• An attacker will leverage these assumptions to break the
protocol

• What’s needed is a way to reason about authentication
• Stay tuned for part 3…

��*"���5�����
���� ���

• Seminal paper published in 1991 SOSP by Burrows,
Abadi and Needham
– BAN Logic

• Simple idea
– make explicit assumptions in an authentication protocol
– describe protocol by formal algebra

• make explicit initial states
• derive belief relationships through state transitions
• final state tells us what we can know

9

�# $%�
�6�
�����

• What does this protocol achieve?
• Does this protocol need more assumptions than another

one?
• Does this protocol do anything unnecessary that could

be left out without weakening it?
• Does this protocol encrypt something that could be sent

in the clear

' ���������%�
�

• Freshness
– if you’ve sent Joe a number (nonce) you’ve never sent him

before, and if you receive back from Joe something that depends
on the number, then you ought to believe that Joe’s message is
fresher than yours

• Private key validity
– if you believe that you and Joe know K, then you ought to

believe that anything you receive encrypted with K comes from
Joe.

10

'�
�������%�
�

• Public validity
– if you believe that K is Joe’s public key, than you should believe that any message you can decrypt with K comes from

that any message you can decrypt with K comes from Joe.

• Shared secrets
– if you believe that only you and Joe know X, then you ought to

believe that any encrypted message you receive containing X
originally comes from Joe

������%�
�� �
������
�� $
� ��
5 ���

• Joe could reveal his secret to someone.
• A bad guy could deduce a public/private key.
• A nonce may not actually be so fresh or random.

11

)�
��%%� ��

• Describe the messages sent in a protocol
– 2: A->B: {A, Kab}Kbs

• “A sends to B a message containing {A, Kab} encrypted with the private key
Kbs, where Kab is a key suggested by some server S.”

• Transform each message into a idealized message that can lead to beliefs
– 2: A->B: {A <-Kab-> B}Kbs

• “A says to B that Kab is a good key for communicating between A and B according to S.”
– Generally omit cleartext components since they can be forged and can not lead to new beliefs,

• Beliefs yield assertions about the system
– B believes that S once said that Kab is a good key for communication between A

and B.

&
��
5�1�� ��� �0���
�
��

• Parties only say what they believe.
• Present

– begins with the start of the protocol
• Past

– anything before the present
• If you believe something in the present, then you believe it for the run of

the protocol.
• A belief held in the past (before the current run of the protocol) is not

necessarily valid in the present.
– beware of old beliefs

12

�����%�
0�'
�� "
�

• An encrypted message is a logical state concealed by an
encryption key
– (A <-K->B)Kbs
– “K is a good key for use between A and B”

• An encrypted message can not be understood by a
principal who does not have the key

)�
�*"��

• A,B,S denote principles
• Kab, Kas, Kbs denote shared (secret) keys
• Ka, Kb, Ks denote public keys

– 1/Ka, 1/Kb, 1/Ks denote matching private keys

• Na, Nb, Ns denote specific statements
– eg, nonces, which can be used to establish freshness

• Conjunction (,) is only propositional connective

13

�$
����������

• P |= X
– P believes X

• P may act as though X were true

• P <| X
– P sees X

• someone has sent P a message
containing X. P may repeat X in other
messages

• P |~ X
– P once said X

• P at one time sent a message containing
the statement X. No one knows how
long ago.

• P => X
– P has jurisdiction over X

• P is an authority on X and should be
trusted on this matter. Used for
delegation, eg, servers that generate
keys.

• #(X)
– The formula X is fresh

• never been sent before this run of the
protocol

• P <-K->Q
– P and Q may use the shared key K to

communicate
• K will never be discovered by any principal

except P or Q.

• K:->P
– P has K as a public key

• 1/K (matching private key) will never be
discovered by any party but P

• P=X=Q
– The formula X is a secret known only to P and

Q, and possibly to parties trusted by them
• Only P and Q may use X to prove their

identities to one another (eg, a password)

• { X} K
– X encrypted with the key K

• <X>Y
– X combined with Y

• intent is that Y is a secret, eg passwd

• Y proves the origin of X.

'
�� "
�'
 ���"����
�

• How to derive beliefs from the origins of messages

P |= K:->Q, P<| { X} 1/K

P |= Q |~ X

P |= Q <- K -> P, P <| { X} K

P |= Q |~ X

SHARED KEYS: If P believes that K is a good
key for P and Q, and P sees X
encrypted with K, then P believes
that Q once said X.

PUBLIC KEYS:If P believes that K is Q’s public key, and
P sees X encrypted with K’s private key, then
P believes that Q once said X.

P |= Q =Y= P, P <| <X>Y

P |= Q |~ X

SHARED SECRETS: I f P believes that Y is a secret shared
between Q and P, and P see’s<X>Y, then P believes that
Q once said X.

14

	��
�7
��5�� ���

• Decryption of a message only says that it was uttered at some point,
possibly in the past.

– does not say if the sender still believes it
• eg, could be result of a replay

P |= #(X), P |= Q |~ X

P |= Q |= X

If P believes that X was said
recently, and that Q
said X, then P believes that Q
believes X

This is the only formula that promotes |~ to |=.
It reflects essenceof challenge/response protocols.

Fresh statement is challenge.
Any message containing challenge is also fresh.

8����0���������

• If P believes that Q has jurisdiction over X, then P trusts
Q on the truth of X

P |= Q => X, P |= Q |= X

P |= X

This rule gets used a lot when thinking about key servers.

15

�$
�(��
�����
�

P believes a set of statements iff P believes each individual
statement.

P |= X, P |= Y

P |= (X,Y)

P |= (X,Y)

P |= X

P |= Q |= (X,Y)

P |= X

If a principal sees a formula, then he can see its components (provided keys are known).

P <| (X,Y)

P <| X

P <| <X>Y

P <| X

P |= Q<-K->P, P<|{ X} K

P <| X

If a part of a formula is known to be fresh, the entire formula is fresh (freshness distributes)

P |= #(X)

P|= #(X,Y)

.0
 ��9
0�������

• Transform a message step
into an idealized protocol
step

– include only information
that contributes to the
beliefs of the recipient

• eliminate hints
– make explicit beliefs

• Example
– Protocol Step

• A->B : {A, Kab}Kbs
• intended to tell B, who knows Kbs, that

Kab is a good key for communicating with
A.

– Idealized Protocol Step
• A ->B : {A <-Kab-> B} Kbs
• Allows us to deduce

– B <| {A <-Kab->B}Kbs
• If B |= B<-Kbs->S and S=>Kab, then

– B |= S |~ {A<-Kab->B}
– “if B believes that Kbs is a good key for B

and S, and S has jurisdiction over Kab, then
B believes that S once said that Kab is a
good key for use between A and B.”

– is it still a good key?
» who knows??

16

/�����
 ��� ���� �%����

• Derive idealized protocol from original one
• Write assumptions about initial system state
• Attach logical formulas to the statements of the protocol
• Attach assertions to the statements of the protocol
• Apply postulates to assumptions and assertions to derive new

beliefs
– first assertion contains assumptions
– last assertion contains the conclusions.

• Repeat until convinced.

��$ ��- ���5�����
���� ���

• Initial assumptions state what keys are shared between
principles, which principles are trusted, and which
statements are fresh

• Authentication then means
– A |= A<-K->B
– B |= A<-K->B

• Could also mean in addition
– A|= B|= A <-K->B
– B |= A|= A<-K->B

17

	

0� $ �0�����
0
��
�
+����
0

1: A->S: A, B, Na
2: S->A: {Na, B, Kab}, {Kab,

A}Kbs}}Kbs
3: A->B:{Kab, A}Kbs
4: B->A: {Nb}Kab
5: A->B: {Nb-1}Kab

Key Server

Alice Bob

1:A,B,Na

2:{ Na,B,Kab,{ Kab,A} Kbs} Kas

3:{ Kab,A} Kbs
4:{ Nb} Kab

5:{ Nb-1} Kab

)�
�.0
 ��9
0������

1: !! Contributes nothing !!
2: S->A: {

Na, (A<-Kab->B),
#(A<-Kab->B),

{A<-Kab->B}Kbs
}Kas

3:A->B: {A<-Kab->B}Kbs
4:B->A: {Nb, (A<-Kab->B)}Kab
5:A->B: {Nb, (A<-Kab->B)}Kab

1: A->S: A, B, Na
2: S->A: {Na, B, Kab}, {Kab, A}Kbs}}Kbs
3: A->B:{Kab, A}Kbs
4: B->A: {Nb}Kab
5: A->B: {Nb-1}Kab

The actual protocol
(messages sent)

The idealized protocol
(statements made)

18

�� ��9��"���
�%����:
.���� ������$%����

A |= A<-Kas->S
S |= A <-Kas->S
S |= A <-Kab->B
A |= (S => A<-K-> B)
A |= (S => #(A<-K->B))
A |= #(Na)
S |= #(A <-Kab-> B)

B |= B<-Kbs->S

S |= B <-Kbs->S

B |= (S => A<-K-> B)

B |= #(Nb)

B |= #(A<-K->B)

This is that hidden initial assumption

Initial keys

Key
server

Freshness

2� ����
��0
 ��9
0�%������ ��

2: S->A: {Na, (A<-Kab->B), #(A<-Kab->B), {A<-Kab>B}Kbs}Kas

First,
A <| { Na, (A<-Kab->B), #(A<-Kab->B), { A<-Kab>B} Kbs} Kas

which A decrypts using Kas. Since A knows Na to be fresh, we can apply:

Leading to
A |= S |= A <-Kab-> B (good key)
A |= S |= #(A <-Kab -> B) (fresh key)

P |= #(X), P |= Q |~ X

P |= Q |= X

(nonce verification)

P |= Q => X, P |= Q |= X

P |= X
Applying (jurisdiction)

A |= A <-Kab-> B
A |= #(A <-Kab -> B)

Gives

19

���
%
 ����� ������

�

3:A->B: { A<-Kab->B} Kbs

A <| { A<-Kab->B} Kbs

P |= Q <- K -> P, P <| { X} K

P |= Q |~ X

SHARED KEYS: I f P believes that K is a good
key for P and Q, and P sees X
encrypted with K, then P believes
that Q once said X.

We apply the message meaning postulate:

To obtain
B |= S |~ A <-Kab-> B

In order to obtain B|= A<-Kab->B, we need to rely on nonce
verification (recall, only N.V. promotes |~ to |=)

�
����"��� �� ���$%�������

#%�����

Since we assumed initially that
B |= #(A<-K->B)

We can promote

B |= S |~ A <-Kab-> B

to
B|= A <-Kab->B

using
P |= #(X), P |= Q |~ X

P |= Q |= X

(nonce verification)

20

-
����"������
��
+
��� ��&������
� �0

4:B->A: { Nb, (A<-Kab->B)} Kab

Since
A <| { Nb, (A<-Kab->B)} Kab}

and
A |= A <-Kab->B

then
A |= B |= (A <-Kab->B)

(since B said it, B believes it)

)�
�5�� ����
%

5:A->B: { Nb, (A<-Kab->B)} Kab

Allows
B |= A |~ { Nb, (A<-Kab->B)}

P |= #(X), P |= Q |~ X

P |= Q |= X

nonce verification

Freshness distributes, so we can apply

to get
B |= A |= A <-Kab->B

21

�����
�
�0��
�� +

A |= A <-Kab->B
B |= A <-Kab->B
A |= B |= A <-Kab> B
B |= A |= A <-Kab> B

which is the goal of an authentication protocol.

Had we not made the freshness assumption, we would have
been stuck and could not have gotten here.

���������

• We need to make an awful lot of assumptions in
designing authentication protocols.

• The assumptions are there, whether you state them or
not.

• Only by stating them explicitly can we enter into a final
acceptable state of mutual authentication.

22

43

����
�������� �0�.��
"����

• Sometimes we care about knowing messages authentic,
but don’t care about privacy.

• If only sender and receiver knew the keys we would be
done … but that’s often not the case
– A pair of keys for each pair of communicating parties?

• In public key (RSA) systems the “encryption” key is
potentially known by everyone
– anyone could have sent us a confidential message by encrypting

with our public key

44

��� ��
��;������"� ���
<

• Encryption can be expensive, e.g., RSA 1Kbps
• To speed up, let’s sign just the checksum instead!

– Check that the encrypted bit is a signature of the checksum

• Problem: Easy to alter data without altering checksum
• Answer: Cryptographically strong “checksums” called

message digests where it’s computationally difficult to
choose data with a given checksum
– But they still run much more quickly than encryption
– MD5 (128 bits) is the most common example

23

45

'
�� "
�!�"
�����'!=1��/��

• Act as a cryptographic checksum or hash
– Typically small compared to message (MD5 128 bits)
– “One-way”: infeasible to find two messages with same digest

Transform

Initial digest Message (padded)

Transform

Message digest

512 bits 512 bits 512 bits

…

…

Transform

46

���%�"� %������������

• These techniques can be applied at different levels:
– IP packets (IPSEC)
– Web transfers or other transports (SSL/TLS, Secure HTTP)
– Email (PGP)

• Next time ..

24

47

�
�����
%��

• Privacy, integrity, and authenticity
• Cryptographic mechanisms are used to support these

properties: private key, public key and digests

