
Remote Procedure Call

Remote Procedure Call

• Integrate network communication with
programming language

• Procedure call is well understood
– implementation

– use

• Control transfer

• Data transfer

Goals

• Easy
– make it look like PC at all costs

• Simple
– make sure it is implementable

• Fast
– optimize ruthlessly for the common case

The Procedure Call Model

• Caller and callee run in
the same address space

• Caller is suspended

• Data passes from caller to
callee

• Callee executes procedure

• Data passes from callee to
caller

• Caller is resumed

• Compiler takes care of the
dirty work

p()
{

int x = bar(10);
}

int bar(int z)
{ return z + 20; }

The RPC Model
• Caller and callee run on different machines

• Caller is suspended

• Message passes from caller to callee

• Callee executes procedure

• Message passes from callee to caller

• Caller is resumed

• RPC system takes care of the dirty work

p()
{

int x = bar(10);
}

int bar(int z)
{ return z + 20; }

Why not messages?

• sendMessage(p,M); recvMessage(p, M)
– UDP sockets, Mach messages

– options aplenty
• synchronous vs. asynchronous

• reliable vs. unreliable

• ordered vs. unordered

• Bottom line is that messages do the right
thing, but are hard to use.

Why not Shared Memory?

• Initial RPC implementation discounted
possibility of using shared memory
– it was hard

• Spector’s remote reference was too slow

• page-based DSM was not invented yet

• language/compiler support for objects not yet
discovered

– it was more difficult
• direct exposure of synchronization

• interface at much too low a level

Problems with Shared Memory

• LOAD/STORE interface

• much much slower than it “looks”

• limited protection levels

• anonymous accesses (passive)

• sharing granularity is large (address space)

• no access control (eg, enforced locking)

• uncontained failure (both between and
within a program)

The do’s and the don’t’s

• Simplify construction
of distributed
programs

• Hides many details of
communication and
failure

• Make it trivial to build
distributed programs

• Hide all the details of
communication,
errors, and failure.

RPC DOES RPC DOES NOT

Even though RPC does not do everything, it’s an incredibly
useful tool.

Notable RPC Systems

• Nelson’s PhD Thesis

• Courier

• Cedar RPC

• SUN RPC

• Mach RPC

• DEC SRC RPC

• CORBA

• JAVA RMI

Interfaces

• Key assumption of all RPC systems is that
the interface between client and server is
well defined.

• An interface contains
– the names and arguments of all exported

procedures

– the types of all arguments

• Type information allows the RPC system to
serialize (marshall) arguments

Stubs

• Turn procedure arguments/return values
into/out of messages

• Interfaces are statically defined.

Interface Spec

Stub
Generator

An interface is written in an
Interface Description Language
by the designer of a service.

The stub generator
converts the Interface
Spec into executable code.

Client
Stub

Server
Stub

The server stub
links with the server.The client stub links

with the client.

Example

• An interface completely defines an exported
service.
– Limits access to service

– Enables access to service

INTERFACE Math;

PROCEDURE Sum(INTEGER x; INTEGER y) : INTEGER;

TYPE IntArray = ARRAY [0..10] OF INTEGER;

PROCEDURE SumAll(ia: IntArray): INTEGER;
END Math.

Interfaces and Stubs
INTERFACE Math;

PROCEDURE Sum(INTEGER x; INTEGER y) : INTEGER;

TYPE IntArray = ARRAY [0..10] OF INTEGER;

PROCEDURE SumAll(ia: IntArray): INTEGER;
END Math.

Stub
Generator

PROCEDURE Sum(x: INTEGER;
y: INTEGER): INTEGER =

BEGIN
gather up args
send msg to server
return result

END Sum;

Client Stub

PROCEDURE Client() =
BEGIN

Print(Sum(23, 32));
END Client();

PROCEDURE xxSum(m: Msg) =
BEGIN

x := m.firstArgument;
y := m.secondArgument;
res := Sum(x, y);
send res in reply msg

END xxSum;

Server Stub

PROCEDURE Sum(x: INTEGER;
y: INTEGER)

: INTEGER
=
BEGIN

RETURN x+y;
END Sum;

The Big Picture
Client App

caller stub
RPC
library

interface

Client App

serverstub
RPC
library

interface

call msg

reply msg

Who does what?

• To the client, the client stub looks like the
server

• To the server, the server stub looks like the
client

• Stubs marshall and unmarshall arguments
and results

• RPC libraries handle reliable messaging and
conceal the network

Problems with stubs

• Large parameters must be marshalled
apriori

• Cyclic structures hard to deal with

• Hard to pass procedure parameters

• Call by value semantics not always what we
want

• No global variables

Transport Protocol

• Any will do, as RPC runtime specifies the
only visible network interface
– TCP, UDP

• Simple request/reply is best
– Goal is to minimize number of messages

– Leverage communication patterns for reliability

– Bulk transfer with multiple threads

– Consider TCP/IP vs UDP

Why not streaming protocols?

• Streaming protocols intended for bulk
transfer

• Feel around for good bandwidth.
– adapt slowly to improvements and quickly to

degradation

• Large setup time, teardown, and connection
state overhead

• You need connection state information in
RPC layer anyway

The Birrell and Nelson Protocol

• Reliable

• At-most-once semantics

• Optimized for simple (small, short lived)
calls

• Complex calls work, but are slow

Strategy
• Sender always retains last sent packet until ack

is received
– acks can be explicit (ACK) or implicit (next call in

sequence)

• Key concept is CallID
– ([MachineID, Process], SeqNo) -> (activity, event in

activity)

– activity can have one call outstanding
• stream with window size of one.

• easy duplicate suppression
– broken interface, gateway

– delayed initial message. Rexmit.

– delayed response message. Rexmit.

Duplicate Suppression

• each new call includes a callID at least one
more than the last

• on receipt of a new packet, if callID >
lastCallID, ok. Else, is duplicate

• on receipt of a reply packet, if callID ==
lastCallID, ok, else duplicate.

• servers can flush call tables after a few
minutes?

– really, consider debug.

The Simple B&N Protocol

call
send
call
packet

await
ack or
result

return

Call[CallID,
procedure, args]

Result[CallID,
Results]Stub+RPC Stub+RPC

invoke
proc

send
results

do
call

return

The result message serves as the call’s acknowledgement

The Not So Simple B&N
Protocol

call
send
call
packet

build
next
pkt

return

Call[CallID,
procedure, args, pleaseAck]

Stub+RPC Stub+RPC

start
args

send
results

do
call

return

For big or long calls

ack,
wait,
next

Ack[CallID,Pkt = 0]

Data[CallID,Pkt=1,pleaseAck]

Ack[CallID,Pkt =1]

Data[CallID,Pkt=1,noAck]

Results[CallID,Pkt =1, pleaseAck??]

PING[CallID, pkt=1]

Implicit Acks

• Server can avoid work if not necessary
– client is down, or running on slower processor

• Client can implement its own timeout
policies

• Still need support for client ping if server
ack is lost
– increases delay until client can determine server

failure

Transparency Issues

• Goal is to make semantics of remote call
match local call

• Regular procedure call
– at most once semantics

• RPC must deal with
– communication and site failure

– really want zero-or-one semantics but hard to
implement efficiently

• see transactions

Binding Issues

• Question is when does client “connect” to
server?

• In local case, binding is simple and implicit
– at link time, or program instantiation time.

– failure is not an issue

• In remote case, binding must be made
explicit
– servers can move or have multiple instatiations

• Failure at bind time is easy to deal with

Binding and Naming

• Servers export interfaces through a name
server

• Clients import interfaces through a name
server

• Name server maps service names into
network addresses
– service names are generally text strings

• Services (including the name server) may
be replicated for availability

Heterogeneity

• How to deal with client and server being of
different types?
– architecture, OS, programming languages?

• Fortunately, the interface specifies at a high
level what the relationship is.

• Static IDL solves many problems
– procedures and types are pre-declared

– client/server can negotiate type formats

– standard wire format or tagged arguments

Concurrency

• Caller is suspended while RPC executes

• Single threaded systems are a problem for
client and server
– SunOS, BSD

– heavyweight OS processes for concurrency

• Threads naturally complement RPC systems
– one call per thread

– one service request per thread

Performance

• Fast RPC is now well understood

• Overhead is about 5% on top of what you
would get if you rolled your own protocol

• The bottlenecks are not in the stubs
– Network and host interface

• Although this is changing with faster
networks
– Calls for higher performance request/reply

services

Avoiding Process Overhead

• Processes are expensive
– create, destroy, switch to

• Avoid doing process management
– cache idle processes on server

– include process ID as a “hint” to dispatcher

– do direct dispatch from device driver

• Result
– for simple calls, no new processes are created

– four context switches
• fewer if client or server are otherwise idle

What about the paper?

• Possible to
precisely account
for latency
– we can bicker over

the strategy…

– but a computer’s
just a big clock

• nothing magic

• Buffer management is critical
– so critical you are allowed to

cheat

• Assembly language is faster
than not assembly language

• Network controller counts

• IP and UDP layers not totally
useless

• Spare processors are always a
good thing to have.

Other Issues

