Remote Procedure Call

Remote Procedure Call

Integrate network communication with
programming language

Procedure call is well understood

— implementation

— use

Control transfer

Datatransfer

Goadls

o Easy
— makeit look like PC at all costs
o Simple
— make sureit isimplementable
» Fast
— optimize ruthlessly for the common case

The Procedure Call Model

e Cadlerandcaleerunin
the same address space

o Caler issuspended

» Data passes from caller to
calee

» Callee executes procedure

» Data passes from callee to
caler l

o Cdlerisresumed

» Compiler takes care of the
dirty work

int bar(int z)
{ returnz + 20; }

The RPC Moddl

» Caller and callee run on different machines
e Calerissuspended

* Message passes from caller to callee

« Callee executes procedure

* Message passes from calleeto caller

o Callerisresumed

* RPC system takes care of the dirty work

l int bar(int 2)
{ returnz + 20; }

Why not messages?

» sendMessage(p,M); recvMessage(p, M)
— UDP sockets, Mach messages
— options aplenty
* synchronous vs. asynchronous
* reliablevs. unreliable
* ordered vs. unordered
» Bottom lineisthat messages do the right
thing, but are hard to use.

Why not Shared Memory?

* Initial RPC implementation discounted
possibility of using shared memory
—itwas hard
* Spector’s remote reference was too slow

* page-based DSM was not invented yet

* language/compiler support for objects not yet
discovered

— it was more difficult
« direct exposure of synchronization
* interface at much too low aleve

Problems with Shared Memory

 LOAD/STORE interface

e much much slower than it “looks’

* limited protection levels

¢ aNONYMOUS accesses (passive)

 sharing granularity is large (address space)
* no access control (eg, enforced locking)

 uncontained failure (both between and
within a program)

Thedo'sand thedon't's

RPC DOES RPC DOESNOT
» Simplify construction e Makeit trivia to build
of distributed distributed programs
programs Hideall the details of

e Hides many details of
communication and
failure

communication,
errors, and failure.

Even though RPC does not do everything, it's an incredibly

useful tool.

Notable RPC Systems

* Nelson’s PhD Thesis

e Courier

» Cedar RPC

« SUN RPC

e Mach RPC

e DEC SRCRPC
e CORBA

« JAVA RMI

|nterfaces

» Key assumption of all RPC systemsis that
the interface between client and server is
well defined.

» Aninterface contains

— the names and arguments of all exported
procedures
— the types of all arguments
» Typeinformation allows the RPC system to
serialize (marshall) arguments

Stubs

 Turn procedure arguments/return values

Into/out of messages
* Interfaces are statically defined.

Interface Spec Aninterfaceiswritteninan
Interface Description Language

¢ by the designer of a service.

The server stub

Theclient stub links | Client Server links with the server.

with the client. Stub Stub

The stub generator
convertsthe Interface
Spec into executable code.

Example

INTERFACE Math;
PROCEDURE Sum(INTEGER x; INTEGER y) : INTEGER;
TYPE IntArray = ARRAY [0..10] OF INTEGER,;

PROCEDURE SumAll(ia: IntArray): INTEGER;
END Math.

» Aninterface completely defines an exported

sarvice.

— Limits access to service
— Enables access to service

| nterfaces and Stubs

INTERFACE Math;

END Math.

PROCEDURE SUm(INTEGER x; INTEGER y) : INTEGER;
TYPE IntArray = ARRAY [0..10] OF INTEGER;

PROCEDURE SumAll(ia: IntArray): INTEGER;

Server Stub

PROCEDURE Client() =

PROCEDURE xxSum(m: Msg) =
BEGIN

BEGIN = fi .
Print(Sum(z3, 32); X = m.firstArgument; .
END Client(); y := m.secondArgument;
res:=sum(x, y);
send resin reply msg
PROCEDURE Sum(x: INTEGER; END xxSum;
y: INTEGER): INTEGER =
BEGIN PROCEDURE Sum(x: INTEGER;
gather up args y: INTEGER)
S ey D SE YT : INTEGER
return result -
END Sum; BEGIN
; RETURN x+y;
Client Stub END Sum.

The Big Picture

Client App Client App

call msg

reply msg
RPC
library Stub | server
interface interface
Who does what?

» Totheclient, the client stub looks like the
server

» To the server, the server stub looks like the
client

 Stubs marshall and unmarshall arguments
and results

» RPC libraries handle reliable messaging and
conceal the network

Problems with stubs

L arge parameters must be marshalled
apriori

Cyclic structures hard to deal with
Hard to pass procedure parameters

Call by value semantics not always what we
want

No global variables

Transport Protocol

« Any will do, as RPC runtime specifies the
only visible network interface
—TCP, UDP

o Simple request/reply is best
— Goal isto minimize number of messages
— Leverage communication patterns for reliability
— Bulk transfer with multiple threads
— Consider TCP/IP vs UDP

Why not streaming protocols?

Streaming protocols intended for bulk

transfer

Feel around for good bandwidth.

— adapt dlowly to improvements and quickly to
degradation

L arge setup time, teardown, and connection

state overhead

Y ou need connection state information in
RPC layer anyway

The Birrell and Nelson Protocol

Reliable
At-most-once semantics

Optimized for ssimple (small, short lived)
cals

Complex callswork, but are slow

Strategy

» Sender always retains last sent packet until ack
isreceived
— ackscan be explicit (ACK) or implicit (next call in
sequence)
» Key concept isCallD
— ([Machinel D, Process], SegNo) -> (activity, event in
activity)
— activity can have one call outstanding
 stream with window size of one.
 easy duplicate suppression
— broken interface, gateway
— delayed initial message. Rexmit.
— delayed response message. Rexmit.

Duplicate Suppression

» each new call includesacallD at |east one
more than the last

* on receipt of anew packet, if callD >
lastCallD, ok. Else, is duplicate
* on receipt of areply packet, if callD ==
lastCalllD, ok, else duplicate.
* servers can flush call tables after afew
minutes?
—redlly, consider debug.

Call[CallID,
procedure, args)

The Simple B& N Protocol

Result[CallID,
Results]

nvoke
proc

do
call

il

resultg return

Stub+RPC

The result message serves as the call’ s acknowledgement

The Not So Simple B&N

cal[callD,
procedure, args, pleaseAck]
start
args
Ack[CalllD,Pkt = O]
ack,
wait, / do
Data[CalllD,Pkt=1,pleaseAck] e call
Ack[CallID,Pkt =1] l
_ send
Data[Calll D,Pkt=1,n0Ack] resud < return
NG[CalllD, pkt=1] by
Results[CalllD,Pkt =1, pleaseAck?7] Stub+RPC

For big or long calls

Implicit Acks

Server can avoid work if not necessary

— client is down, or running on slower processor
Client can implement its own timeout
policies

Still need support for client ping if server
ack islost

— increases delay until client can determine server
failure

Transparency |Issues

Goal isto make semantics of remote call
match local call

Regular procedure call

— at most once semantics

RPC must deal with

— communication and site failure

— really want zero-or-one semantics but hard to
implement efficiently
* seetransactions

Binding Issues

Question is when does client “connect” to
server?

In local case, binding is simple and implicit
— at link time, or program instantiation time.

— failureis not an issue

In remote case, binding must be made
explicit

— servers can move or have multiple instatiations
Failure at bind timeis easy to deal with

Binding and Naming

Servers export interfaces through a name
server

Clientsimport interfaces through a name
server

Name server maps service names into
network addresses
— service names are generally text strings

Services (including the name server) may
be replicated for availability

Heterogeneity

* How to deal with client and server being of
different types?
— architecture, OS, programming languages?
 Fortunately, the interface specifies at ahigh
level what the relationshipis.
» Static IDL solves many problems
— procedures and types are pre-declared
— client/server can negotiate type formats
— standard wire format or tagged arguments

Concurrency

» Caller is suspended while RPC executes
 Single threaded systems are a problem for
client and server
— SunOsS, BSD
— heavyweight OS processes for concurrency
» Threads naturally complement RPC systems
— one call per thread
— one service request per thread

Performance

Fast RPC is now well understood

Overhead is about 5% on top of what you
would get if you rolled your own protocol
The bottlenecks are not in the stubs

— Network and host interface

Although thisis changing with faster
networks

— Callsfor higher performance request/reply
services

Avoiding Process Overhead

» Processes are expensive
— create, destroy, switch to

» Avoid doing process management
— cacheidle processes on server
— include process ID asa“hint” to dispatcher
— do direct dispatch from device driver

* Result
— for simple calls, no new processes are created

— four context switches
» fewer if client or server are otherwise idle

What about the paper?

» Possibleto
precisely account
for latency

— we can bicker over
the strategy...

— but acomputer’s
just abig clock
 nothing magic

Buffer management is critical

— socritical you are allowed to
cheat

Assembly language is faster
than not assembly language
Network controller counts

IP and UDP layers not totally
useless

Spare processors are always a
good thing to have.

Other Issues

