# **CSE/EE 461 Distance Vector Routing**

#### **Last Time**

- Introduction to the Network layer
  - Internetworks
  - Datagram and virtual circuit services
  - Internet Protocol (IP) packet format
- The Network layer
  - Provides end-to-end data delivery between networks
  - Issues of scale and heterogeneity

Application
Presentation
Session
Transport
Network
Data Link
Physical

#### **This Time**

- Focus
  - How do we calculate routes for packets?
  - Routing is a network layer function
- Routing Algorithms
  - Distance Vector routing (RIP)

Application
Presentation
Session
Transport
Network
Data Link
Physical

#### **Forwarding and Routing**

- Forwarding is the process that each router goes through for every packet to send it on its way
  - Involves local decisions
- Routing is the process that all routers go through to calculate the routing tables
  - Involves global decisions

### What's in a Routing Table?

• The routing table at A, for example, lists at a minimum the next hops for the different destinations

| Dest | Next<br>Hop |
|------|-------------|
| В    | В           |
| С    | С           |
| D    | С           |
| E    | Е           |
| F    | Е           |
| G    | F           |



### **Kinds of Routing Schemes**

- Many routing schemes have been proposed/explored!
- <u>Distributed</u> or centralized
- <u>Hop-by-hop</u> or source-based
- <u>Deterministic</u> or stochastic
- Single or multi-path
- Static or dynamic route selection
- Internet is to the left ©

#### **Routing Questions**

- How to choose best path?
  - Defining "best" is slippery
- How to scale to millions of users?
  - Minimize control messages and routing table size
- How to adapt to failures or changes?
  - Node and link failures, plus message loss
  - We will use distributed algorithms

#### **Some Pitfalls**

- Using global knowledge is challenging
  - Hard to collect
  - Can be out-of-date
  - Needs to summarize in a locally-relevant way
- Inconsistencies in local/global knowledge can cause
  - Loops (black holes)
  - Oscillations, esp. when adapting to load

### Network as a Graph

• Routing is essentially a problem in graph theory



### **Distance Vector Routing**

- Assume:
  - Each router knows only address/cost of neighbors
- Goal:
  - Calculate routing table of next hop information for each destination at each router
- Idea:
  - Tell neighbors about learned distances to all destinations

### **DV Algorithm**

- Each router maintains a vector of costs to all destinations as well as routing table
  - Initialize neighbors with known cost, others with infinity
- Periodically send copy of distance vector to neighbors
  - On reception of a vector, if neighbors path to a destination plus neighbor cost is better, then switch to better path
    - update cost in vector and next hop in routing table
- Assuming no changes, will converge to shortest paths
  - But what happens if there are changes?

## DV Example – Initial Table at A



| Dest | Cost | Next |
|------|------|------|
| В    | 1    | В    |
| С    | 1    | С    |
| D    | 8    | -    |
| Е    | 1    | Е    |
| F    | 1    | F    |
| G    | 8    | -    |

### **DV Example – Final Table at A**

• Reached in a single iteration ... simple example



| Dest | Cost | Next |
|------|------|------|
| В    | 1    | В    |
| С    | 1    | С    |
| D    | 2    | С    |
| Е    | 1    | Е    |
| F    | 1    | F    |
| G    | 2    | F    |

### What if there are changes?

- One scenario: Suppose link between F and G fails
  - 1. F notices failure, sets its cost to G to infinity and tells A
  - 2. A sets its cost to G to infinity too, since it learned it from F
  - 3. A learns route from C with cost 2 and adopts it



| Dest | Cost | Next |
|------|------|------|
| В    | 1    | В    |
| С    | 1    | С    |
| D    | 2    | С    |
| Е    | 1    | Е    |
| F    | 1    | F    |
| G    | 3    | С    |

## **Count To Infinity Problem**

- Simple example
  - Costs in nodes are to reach Internet



• Now link between B and Internet fails ...

### **Count To Infinity Problem**

- B hears of a route to the Internet via A with cost 2
- So B switches to the "better" (but wrong!) route



## **Count To Infinity Problem**

• A hears from B and increases its cost



### **Count To Infinity Problem**

- B hears from A and (surprise) increases its cost
- Cycle continues and we "count to infinity"



• Packets caught in the crossfire loop between A and B

#### **Split Horizon**

- Solves trivial count-to-infinity problem
- Router never advertises the cost of a destination back to to its next hop – that's where it learned it from!
- Poison reverse: go even further advertise back infinity
- However, DV protocols still subject to the same problem with more complicated topologies
  - Many enhancements suggested

#### **Routing Information Protocol (RIP)**

- DV protocol with hop count as metric
  - Infinity value is 16 hops; limits network size
  - Includes split horizon with poison reverse
- Routers send vectors every 30 seconds
  - With triggered updates for link failures
  - Time-out in 180 seconds to detect failures
- RIPv1 specified in RFC1058
  - www.ietf.org/rfc/rfc1058.txt
- RIPv2 (adds authentication etc.) in RFC1388
  - www.ietf.org/rfc/rfc1388.txt

## **Key Concepts**

- Routing is a global process, forwarding is local one
- The Distance Vector algorithm and RIP
  - Simple and distributed exchange of shortest paths.
  - Weak at adapting to changes (loops, count to infinity)