CSE/EE 461 - 10-18-04

Bridging LANs

Last Two Times ...

- Medium Access Control (MAC) protocols
 - Part of the Link Layer
 - At the heart of Local Area Networks (LANs)
- How do multiple parties share a wire or the air?
 - Random access protocols (CSMA/CD)
 - Contention-free protocols (turn-taking, reservations)
 - Wireless protocols (CSMA/CA and RTS/CTS)

This Time -- SWITCHING

- Focus:
 - What to do when one shared LAN isn't big enough?
- Interconnecting LANs
 - Bridges and LAN switches
 - A preview of the Network layer

Application
Presentation
Session
Transport

Data Link Physical

Network

Limits of a LAN

- One shared LAN can limit us in terms of:
 - Distance
 - Number of nodes
 - Performance

- How do we scale to a larger, faster network?
 - We must be able to interconnect LANs

SWITCHING

- Xferring a packet from one network to another
- Packet switched vs. circuit switched
- Connection vs. Connectionless
- Contention vs. Congestion

Bridges and Extended LANs

- "Transparently" interconnect LANs with bridge
 - Receive frames from each LAN and forward to the other
 - Each LAN is its own collision domain; bridge isn't a repeater
 - Could have many ports or join to a remote LAN

Backward Learning Algorithm

- To optimize overall performance:
 - Shouldn't forward $A \rightarrow B$ or $C \rightarrow D$, should forward $A \rightarrow C$ and $D \rightarrow B$

- How does the bridge know?
 - Learn who is where by observing source addresses and prune
 - Forward using destination address; age for robustness

Why stop at one bridge?

- But to avoid loops we must forward only on select bridge ports!
- The Spanning Tree algorithm does this
- It is separate from backward learning

Spanning Tree Example

- Spanning tree uses select bridges so there are no cycles
 - Prune some ports
 - Only one tree
- Q: How do we find a spanning tree?
 - Automatically
 - Think:
 - Rootier
 - Rootiest

Spanning Tree

- Compute ST with *a* bridge as *root* such that
 - Root forwards onto all of its outgoing ports
 - Other bridges forward TO the root if a packet is coming from a bridge further from the root, else they forward away from the root
 - (UP)*(DOWN*)

The Aunt Martha Explanation

- Bridges run an algorithm to determine a spanning tree
- If a bridge is on the path to the root, it forwards messages to the root via the next bridge (up).
- If a bridge is not on the path to the root, it doesn't forward messages to the root.
- If a switch has heard from a given host via a bridge, it forwards to that host via the bridge (down)
- If a bridge is the root, it forwards to all bridges.

Spanning Tree Algorithm

- Distributed algorithm to compute spanning tree
 - Robust against failures, needs no organization
 - Developed by Radia Perlman at DEC
 - IEEE 802.1 spec
- Outline: Goal is to turn some bridge ports off
 - 1. Elect a root node of the tree (lowest address)
 - Grow tree as shortest distances from the root (using lowest address to break distance ties)
 - All done by bridges sending periodic configuration messages over ports for which they are the "best" path
 - Then turn off ports that aren't on "best" paths

Algorithm Overview

- Each bridge has a unique id (e.g., B1, B2, B3)
- · Select bridge with smallest id as root
- Select bridge on each LAN that is closest to the root as that LAN's designated bridge (use id to break ties)
- Each bridge forwards frames over each LAN for which it is the designated bridge

Algorithm continued

- Bridges exchange configuration messages
 - id for bridge sending the message
 - id for what the sending bridge believes to be root bridge
 - distance (hops) from sending bridge to root bridge
- Each bridge records current best configuration message for each port
- Initially, each bridge believes it is the root
- When learn not root, stop generating configuration message
 - in steady state, only root generates configuration messages

Algorithm More...

- When learn not designated bridge, stop forwarding configuration messages
 - in steady state, only designated bridges forward configuration messages
- Root bridge continues to send configuration messages periodically
- If any given bridge does not receive configuration message after a period of time, starts generating configuration messages claiming to be to be the root

Algorithm Example

- Message format: (root, dist to root, bridge)
- Sample messages sequences to and from B3.
 - 1. B3 sends (B3, 0, B3) to B2 and B5
 - 2. B3 receives (B2, 0, B2) and (B5, 0, B5) and accepts B2 as root
 - 3. B3 sends (B2, 1, B3) to B5
 - 4. B3 receives (B1, 1, B2) and (B1, 1, B5) and accepts B1 as root
 - B3 wants to send (B1, 2, B2) but doesn't as its nowhere "best"
 B2 and b5 are better choices.
 - 6. B3 receives (B1, 1, B2) and (B1, 1, B5) again ... stable
 - Data forwarding is turned off to the LAN A

Some other tricky details

- Configuration information is aged
 - If the root fails a new one will be elected
- Reconfiguration is damped
 - Adopt new spanning trees slowly to avoid temporary loops

LAN Switches

- LAN switches are multi-port bridges
 - Modern, high performance form of bridged LANs
 - Looks like a hub, but frames are switched, not shared
 - Every host on a separate port, or can combine switches

Limitations of Bridges/Switches

- LAN switches form an effective small-scale network
 - Plug and play for real!
- Why can't we build a large network using bridges?
 - Little control over forwarding paths
 - Size of bridge forwarding tables grows with number of hosts
 - Broadcast traffic flows freely over whole extended LAN
 - Spanning tree algorithm limits reconfiguration speed
 - Poor solution for connecting LANs of different kinds

Key Concepts

- We can overcome LAN limits by interconnection
 - Bridges and LAN switches
 - But there are limits to this strategy ...
- Next Topic: Routing and the Network layer
 - How to grow large and really large networks